当前位置: X-MOL 学术J. Appl. Math. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Some aspects of zero-divisor graphs for the ring of Gaussian integers modulo $$2^{n}$$ 2 n
Journal of Applied Mathematics and Computing ( IF 2.4 ) Pub Date : 2021-03-01 , DOI: 10.1007/s12190-021-01518-9
Deepa Sinha , Bableen Kaur

For a commutative ring R with unity (\(1\ne 0\)), the zero-divisor graph of R is a simple graph with vertices as elements of \(Z(R)^{*}=Z(R)\setminus \{ 0 \}\), where Z(R) is the set of zero-divisors of R and two distinct vertices are adjacent whenever their product is zero. An algorithm is presented to create a zero-divisor graph for the ring of Gaussian integers modulo \(2^{n}\) for \(n\ge 1\). The zero-divisor graph \(\Gamma (\mathbb {Z}_{2^{n}}[i])\) can be expressed as a generalized join graph \(G[G_{1}, \dots , G_{j}]\), where \(G_{i}\) is either a complete graph (including loops) or its complement and G is the compressed zero-divisor graph of \(\mathbb {Z}_{2^{2n}}\). Next, we show that the number of isomorphisms between the zero-divisor graphs for the ring of Gaussian integers modulo \(2^{n}\) and the ring of integers modulo \(2^{2n}\) is equal to \(\prod _{j=1}^{2(n-1)}2^{j}!\).



中文翻译:

高斯整数环的模数为$ 2 ^ {n} $$ 2 n的零除数图的某些方面

对于交换环- [R具有单位(\(1 \ NE 0 \) ),的零除数图表- [R是一个简单的图形与顶点作为元素\(Z(R)^ {*} = Z(R)\ setminus \ {0 \} \) ,其中ž[R )是该组的零除数ř和两个不同的顶点相邻每当他们的产品是零。提出的算法来创建高斯整数环零除数图形模\(2 ^ {N} \)\(N \ GE 1 \) 。零因数图\(\ Gamma(\ mathbb {Z} _ {2 ^ {n}} [i])\)可以表示为广义联接图\(G [G_ {1},\ dots,G_ {j}] \),其中\(G_ {i} \)是完整图(包括循环)或其补码,G\(\ mathbb {Z} _ {2 ^ {2n}} \)的压缩零因子图。接下来,我们证明高斯整数模\(2 ^ {n} \)的环和整数模\(2 ^ {2n} \)的零环的零除图之间的同构数等于\ (\ prod _ {j = 1} ^ {2(n-1)} 2 ^ {j}!\)

更新日期:2021-03-01
down
wechat
bug