当前位置: X-MOL 学术Multibody Syst. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust optimal solution for a smart rigid–flexible system control during multimode operational mission via actuators in combination
Multibody System Dynamics ( IF 2.6 ) Pub Date : 2021-03-01 , DOI: 10.1007/s11044-021-09782-0
Milad Azimi , Samad Moradi

This paper is aimed at developing several control scenarios for vibration suppression of a flexible microsatellite as a multibody system with nonlinear fully coupled dynamics in different but interconnected in-orbit mission phases. The design approach is to exploit different actuators in a single and hybrid configuration with an optimal switching mechanism to achieve a desirable maneuvering performance by means of agility and accuracy. In this regard, a genetic algorithm (GA)-particle swarm optimization (PSO) based nonsingular terminal sliding mode control (GP-NSTSMC) and extended Lyapunov-based controller design (LD) are developed to cope with the limitations of bounded uncertainty and external disturbances. Great features of the GP-NSTSMC are its gains which are selected based on two major criteria, system energy and maneuver time, and for LD we consider the piezoelectric (PZT) and reaction wheel (RW) performance in the form of mechanical and electrical energies in the structure of the control algorithm. Despite the capabilities of these algorithms, they still excite high-frequency flexible modes. Accordingly, by applying feedback voltages to the PZTs, the extra vibration is actively damped, where the strain rate feedback (SRF) method is set to determine the control voltages. Furthermore, to satisfy one of the mission’s requirements, which is solar panels deployment, a classical Levenberg–Marquardt (CLM) technique for online mass property identification along with an effective fault detection scenario is employed. A comparative assessment of the proposed hybrid actuator/controllers is presented to clarify the technical aspects of this multimode scenario for further investigations and practical real-time space missions.



中文翻译:

通过组合执行器在多模式运行任务中进行智能的刚性-柔性系统控制的强大最佳解决方案

本文旨在开发几种控制方案,以抑制柔性微卫星作为多体系统的振动,该多体系统在不同但相互联系的在轨任务阶段具有非线性完全耦合动力学。该设计方法是利用具有最佳切换机制的单一和混合配置来开发不同的执行器,以通过敏捷性和准确性实现理想的操纵性能。在这方面,开发了基于遗传算法(GA)-粒子群优化(PSO)的非奇异终端滑模控制(GP-NSTSMC)和扩展的基于Lyapunov的控制器设计(LD),以应对有限的不确定性和外部约束干扰。GP-NSTSMC的主要功能是根据系统能量和操纵时间这两个主要标准选择其增益,对于LD,我们在控制算法的结构中考虑了机械能和电能形式的压电(PZT)和反作用轮(RW)的性能。尽管这些算法具有功能,但它们仍然激发高频灵活模式。因此,通过将反馈电压施加到PZT,可以有效地衰减额外的振动,在此设置应变率反馈(SRF)方法来确定控制电压。此外,为了满足任务的要求之一,即太阳能电池板的部署,采用了经典的Levenberg-Marquardt(CLM)技术进行在线质量属性在线识别以及有效的故障检测方案。

更新日期:2021-03-01
down
wechat
bug