当前位置: X-MOL 学术Environ. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pyrolysis-catalytic upgrading of bio-oil and pyrolysis-catalytic steam reforming of biogas: a review
Environmental Chemistry Letters ( IF 15.0 ) Pub Date : 2021-03-01 , DOI: 10.1007/s10311-021-01190-2
Mira Abou Rjeily , Cédric Gennequin , Hervé Pron , Edmond Abi-Aad , Jaona Harifidy Randrianalisoa

Fast-rising population and economic growth are inducing a rapid increase in the energy demand. To date, fossil fuels constitute the primary energy source, but their combustion emits greenhouse gases responsible of global warming. Therefore, developing environment-friendly energy sources is critical. For instance, pyrolysis converts biomass into valuable compounds such as syngas, biochar, and bio-oil, yet produced bio-oil and biogas require further upgrading processes before their use. Current processes include gasification, purification, separation, and catalytic pyrolysis. For syngas synthesis, applying one or a couple of these processes leads to low product yields since they favor the production of bio-oil or biogas. Moreover, tar formation during biomass pyrolysis remains a major technological issue in reactor design. Catalytic reforming is an attractive and efficient method for tar removal via tar oxidation into valuable gases. More importantly, catalytic reforming of pyrolysis volatile products constitutes a promising approach for both tar removal and biogas conversion into syngas. Here, we review the two major catalytic approaches of biomass valorization: catalytic pyrolysis and pyrolysis-catalytic reforming. We demonstrate that the catalytic pyrolysis mainly upgrades bio-oil, while pyrolysis-catalytic efficiently converts biomass into syngas. We analyze the effects of temperature and steam-to-carbon ratio on the products derived from coupling the pyrolysis of agricultural biomass waste to catalytic reforming. Increasing the temperature and steam-to-carbon ratio enhances hydrogen yield. A complete conversion of pyrolysis volatile products into syngas was obtained at 600 °C with steam-to-carbon ratio of 4 for pinewood biomass and nickel catalyst. The use of nickel catalyst supported on lanthana–alumina Ni/La2O3-αAl2O3 for the steam reforming of raw bio-oil produced from pine sawdust pyrolysis enhanced the yields of hydrogen and carbon monoxide, reaching 95% and 93%, respectively, at 700 °C and steam-to-carbon of 15.



中文翻译:

生物油的热解-催化升级和沼气的热解-催化蒸汽重整:综述

快速增长的人口和经济增长正在引发能源需求的快速增长。迄今为止,化石燃料是主要能源,但其燃烧会排放导致全球变暖的温室气体。因此,开发环境友好型能源至关重要。例如,热解将生物质转化为有价值的化合物,例如合成气,生物炭和生物油,但生产的生物油和沼气在使用前需要进一步升级。当前的方法包括气化,纯化,分离和催化热解。对于合成气合成,应用一种或几种方法会导致产物收率低,因为它们有利于生产生物油或沼气。此外,生物质热解过程中焦油的形成仍然是反应器设计中的主要技术问题。催化重整是一种有吸引力的,有效的方法,可通过将焦油氧化成有价值的气体来去除焦油。更重要的是,热解挥发性产物的催化重整构成了除去焦油和将沼气转化为合成气的有前途的方法。在这里,我们回顾了生物质增值的两种主要的催化方法:催化热解和热解催化重整。我们证明催化热解主要升级生物油,而热解催化有效地将生物质转化为合成气。我们分析了温度和水蒸气碳比对将农业生物质废物的热解与催化重整耦合后得到的产物的影响。提高温度和水蒸气与碳的比率可提高氢气产率。对于松木生物质和镍催化剂,在600°C时热解挥发性产物已完全转化为合成气,且蒸汽/碳比为4。在镧系-氧化铝Ni / La上负载的镍催化剂的使用2 ö 3 - α的Al 2 ø 3为蒸汽从松木屑热解产生增强的氢气和一氧化碳的产率生生物油的重整,达到95%和93%,分别在700℃和蒸汽与15的碳。

更新日期:2021-03-01
down
wechat
bug