当前位置: X-MOL 学术Opt. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Developing a chip-scale optical clock
Optical Engineering ( IF 1.1 ) Pub Date : 2021-02-01 , DOI: 10.1117/1.oe.60.2.027107
Weimin Zhou 1 , James Cahill 1 , Jimmy H. Ni 1 , Andrew Deloach 1 , Sang-Yeon Cho 1 , Stephen Anderson 1 , Tanvir Mahmood 1 , Patrick Sykes 1 , Wendy L. Sarney 1 , Asher C. Leff 1
Affiliation  

We report our in-house R&D efforts of designing and developing key integrated photonic devices and technologies for a chip-scale optical oscillator and/or clock. This would provide precision sources to RF-photonic systems. It could also be the basic building block for a photonic technology to provide positioning, navigation, and timing as well as 5G networks. Recently, optical frequency comb (OFC)-based timing systems have been demonstrated for ultra-precision time transfer. Our goal is to develop a semiconductor-based, integrated photonic chip to reduce the size, weight, and power consumption, and cost of these systems. Our approach is to use a self-referenced interferometric locking circuit to provide short-term stabilization to a micro-resonator-based OFC. For long-term stabilization, we use an epsilon-near-zero (ENZ) metamaterial to design an environment-insensitive cavity/resonator, thereby enabling a chip-scale optical long-holdover clock.

中文翻译:

开发芯片级光学时钟

我们报告了我们为芯片级光学振荡器和/或时钟设计和开发关键集成光子器件和技术的内部研发工作。这将为RF光子系统提供精确的光源。它也可能是光子技术提供定位,导航和计时以及5G网络的基本构件。最近,已经证明了基于光学频率梳(OFC)的计时系统可进行超精密的时间传递。我们的目标是开发一种基于半导体的集成光子芯片,以减少这些系统的尺寸,重量,功耗和成本。我们的方法是使用自参考干涉锁定电路为基于微谐振器的OFC提供短期稳定。为了长期稳定,
更新日期:2021-02-28
down
wechat
bug