当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Long-lived charge separation following pump-wavelength–dependent ultrafast charge transfer in graphene/WS2 heterostructures
Science Advances ( IF 11.7 ) Pub Date : 2021-02-26 , DOI: 10.1126/sciadv.abd9061
Shuai Fu 1 , Indy du Fossé 2 , Xiaoyu Jia 1 , Jingyin Xu 1, 3 , Xiaoqing Yu 1 , Heng Zhang 1 , Wenhao Zheng 1 , Sven Krasel 1 , Zongping Chen 4 , Zhiming M. Wang 3 , Klaas-Jan Tielrooij 5 , Mischa Bonn 1 , Arjan J. Houtepen 2 , Hai I. Wang 1
Affiliation  

Van der Waals heterostructures consisting of graphene and transition metal dichalcogenides have shown great promise for optoelectronic applications. However, an in-depth understanding of the critical processes for device operation, namely, interfacial charge transfer (CT) and recombination, has so far remained elusive. Here, we investigate these processes in graphene-WS2 heterostructures by complementarily probing the ultrafast terahertz photoconductivity in graphene and the transient absorption dynamics in WS2 following photoexcitation. We observe that separated charges in the heterostructure following CT live extremely long: beyond 1 ns, in contrast to ~1 ps charge separation reported in previous studies. This leads to efficient photogating of graphene. Furthermore, for the CT process across graphene-WS2 interfaces, we find that it occurs via photo-thermionic emission for sub-A-exciton excitations and direct hole transfer from WS2 to the valence band of graphene for above-A-exciton excitations. These findings provide insights to further optimize the performance of optoelectronic devices, in particular photodetection.



中文翻译:

石墨烯/ WS2异质结构中依赖于泵浦波长的超快电荷转移后的长寿命电荷分离

由石墨烯和过渡金属二卤化碳组成的范德华异质结构在光电应用中显示出了广阔的前景。但是,到目前为止,对于器件操作的关键过程(即界面电荷转移(CT)和重组)的深入了解仍然难以捉摸。在这里,我们通过互补地探测石墨烯中的超快太赫兹光电导和WS 2中的瞬态吸收动力学,研究了石墨烯-WS 2异质结构中的这些过程。光激发后。我们观察到,CT后异质结构中的分离电荷寿命非常长:超过1 ns,而之前的研究报道约为1 ps的电荷分离。这导致石墨烯的有效光选。此外,对于跨石墨烯-WS 2界面的CT过程,我们发现它通过亚-A激子激发的光热电子发射和从WS 2到高于A-激子激发的石墨烯价带的直接空穴转移而发生。这些发现为进一步优化光电器件的性能,特别是光电检测提供了见识。

更新日期:2021-02-28
down
wechat
bug