Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A numerical model to predict three-dimensional interaction dynamic of low-medium-speed maglev vehicle–guideway bridge system
Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit ( IF 1.7 ) Pub Date : 2021-02-27 , DOI: 10.1177/0954409721996553
Fenghua Huang 1 , Bin Cheng 1, 2 , Nianguan Teng 1, 2
Affiliation  

This paper established a numerical model to investigate the dynamic behavior of LMS (low-medium-speed) maglev vehicle-guideway bridge coupling system. In this model, the vehicle was simulated as a 3D (3-dimensional) multi-rigid body with 45 DOFs (degree of freedoms), and the guideway bridge was built through finite element method. Two-dimensional magnet-guideway relationship was introduced, and the control strategies of active suspension control based on PID controller and passive guidance control were employed to reflect the vehicle-guideway interaction. A solution program was then developed to solve the vehicle-guideway interaction problem. Through case study, the vibration responses achieved from 3D interaction model were compared to those from corresponding 2D (2-dimensional) model. Besides, the effects of pier and guideway irregularity on dynamic responses of vehicle-guideway bridge coupling system were investigated, and the frequency responses of vehicle and guideway were also analyzed. The result shows that ignoring the pier modeling or guideway irregularity would significantly undervalue the vibration responses of maglev vehicle-guideway bridge interaction system. The frequency responses indicate that the vibrations of vehicle-guideway bridge system are significantly related to the geometric dimensions of maglev vehicle, especially the distance between two magnet units. Finally, parametric study was carried out to determine the effects of key parameters (i.e., vehicle speed and natural frequency of guideway) on guideway responses.



中文翻译:

预测中低速磁悬浮车轨桥系统三维相互作用动力学的数值模型

本文建立了一个数值模型来研究LMS(中低速)磁悬浮车-导轨桥耦合系统的动力学行为。在该模型中,将车辆模拟为具有45个自由度(自由度)的3D(三维)多刚体,并通过有限元方法建造了导轨桥。介绍了二维的磁-导轨关系,并采用了基于PID控制器和无源制导控制的主动悬架控制策略,以反映车-导轨的相互作用。然后,开发了解决方案程序来解决车辆与导轨之间的相互作用问题。通过案例研究,将3D交互模型获得的振动响应与相应的2D(二维)模型进行了比较。除了,研究了桥墩和导轨不规则性对车桥耦合系统动力响应的影响,并分析了车和导轨的频率响应。结果表明,忽略桥墩模型或导轨不规则性将大大低估磁悬浮车辆-导轨桥相互作用系统的振动响应。频率响应表明,车辆-铁路桥梁系统的振动与磁悬浮车辆的几何尺寸特别是两个磁体单元之间的距离显着相关。最后,进行了参数研究以确定关键参数(即车速和导轨的固有频率)对导轨响应的影响。并分析了车辆和导轨的频率响应。结果表明,忽略桥墩模型或导轨不规则性将大大低估磁悬浮车辆-导轨桥相互作用系统的振动响应。频率响应表明,车辆-铁路桥梁系统的振动与磁悬浮车辆的几何尺寸特别是两个磁体单元之间的距离显着相关。最后,进行了参数研究以确定关键参数(即车速和导轨的固有频率)对导轨响应的影响。并分析了车辆和导轨的频率响应。结果表明,忽略桥墩模型或导轨不规则性将大大低估磁悬浮车辆-导轨桥相互作用系统的振动响应。频率响应表明,车辆-铁路桥梁系统的振动与磁悬浮车辆的几何尺寸特别是两个磁体单元之间的距离显着相关。最后,进行了参数研究以确定关键参数(即车速和导轨的固有频率)对导轨响应的影响。频率响应表明,车辆-铁路桥梁系统的振动与磁悬浮车辆的几何尺寸特别是两个磁体单元之间的距离显着相关。最后,进行了参数研究以确定关键参数(即车速和导轨的固有频率)对导轨响应的影响。频率响应表明,车辆-铁路桥梁系统的振动与磁悬浮车辆的几何尺寸特别是两个磁体单元之间的距离显着相关。最后,进行了参数研究以确定关键参数(即车速和导轨的固有频率)对导轨响应的影响。

更新日期:2021-02-28
down
wechat
bug