当前位置: X-MOL 学术J. Manuf. Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and numerical thermo-mechanical analysis of wire-based laser metal deposition of Al-Mg alloys
Journal of Manufacturing Processes ( IF 6.1 ) Pub Date : 2021-02-26 , DOI: 10.1016/j.jmapro.2021.02.016
Frederic E. Bock , Jan Herrnring , Martin Froend , Josephin Enz , Nikolai Kashaev , Benjamin Klusemann

A finite element model is employed to perform a sequentially coupled thermo-mechanical analysis for enabling rapid process simulations of temperature fields, residual stresses and distortions for the production of additively manufactured parts via laser metal deposition. Experimental identification of characteristic process features such as temperature distribution, melt pool dimensions and bead geometries were used for the initial built-up and calibration of the model. The addition of material during process simulation is realised through reactivating inactive elements during the transient heat transfer analysis and through reactivating a combination of inactive and quiet elements during the mechanical analysis. The travelling heat source is geometrically bounded to precisely control the volume of its energy distribution. The results of the transient heat transfer analysis are sequentially coupled to a mechanical analysis for obtaining information on the resulting residual stresses and deformation. Based on the good agreement between numerical and experimental results of the thermal analysis, conclusions on the corresponding residual stress distributions and deformation are made. It is shown that the model represents an efficient tool for process prediction regarding thermal history, residual stresses and final-part deformations. Finally, the model is utilised to identify parameters and conditions of the process that lead to reduced residual stresses and deformations of the investigated additive part.



中文翻译:

铝镁合金丝基激光金属沉积的实验和数值热力学分析

采用有限元模型来执行顺序耦合的热机械分析,以实现对温度场,残余应力和变形的快速过程仿真,以通过激光金属沉积生产增材制造零件。实验识别特征过程特征,例如温度分布,熔池尺寸和珠粒几何形状,用于模型的初始构建和校准。通过在瞬态传热分析过程中重新激活非活动元素,以及在机械分析过程中重新激活非活动元素和安静元素的组合,可以实现过程仿真过程中材料的添加。行进的热源在几何上有界,以精确控制其能量分布的体积。瞬态传热分析的结果顺序耦合到机械分析,以获取有关所产生的残余应力和变形的信息。基于热分析数值与实验结果的良好一致性,得出了相应的残余应力分布和变形的结论。结果表明,该模型代表了有关热历史,残余应力和最终零件变形的过程预测的有效工具。最后,该模型用于识别过程参数和条件,从而减少残余应力和所研究添加零件的变形。基于热分析数值与实验结果的良好一致性,得出了相应的残余应力分布和变形的结论。结果表明,该模型代表了有关热历史,残余应力和最终零件变形的过程预测的有效工具。最后,该模型用于识别过程参数和条件,从而减少残余应力和所研究添加零件的变形。基于热分析数值与实验结果的良好一致性,得出了相应的残余应力分布和变形的结论。结果表明,该模型代表了有关热历史,残余应力和最终零件变形的过程预测的有效工具。最后,该模型用于识别过程参数和条件,从而减少残余应力和所研究添加零件的变形。

更新日期:2021-02-28
down
wechat
bug