当前位置: X-MOL 学术IEEE Trans. Very Larg. Scale Integr. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
SCERPA Simulation of Clocked Molecular Field-Coupling Nanocomputing
IEEE Transactions on Very Large Scale Integration (VLSI) Systems ( IF 2.8 ) Pub Date : 2021-01-06 , DOI: 10.1109/tvlsi.2020.3045198
Yuri Ardesi , Giovanna Turvani , Mariagrazia Graziano , Gianluca Piccinini

Among all the possible technologies proposed for post-CMOS computing, molecular field-coupled nanocomputing (FCN) is one of the most promising technologies. The information propagation relies on electrostatic interactions among single molecules, overcoming the need for electron transport, significantly reducing energy dissipation. The expected working frequency is very high, and high throughput may be achieved by introducing an efficient pipeline of information propagation. The pipeline could be realized by adding an external clock signal that controls the propagation of data and makes the transmission adiabatic. In this article, we extend the Self-Consistent Electrostatic Potential Algorithm (SCERPA), previously introduced to analyze molecular circuits with a uniform clock field, to clocked molecular devices. The single-molecule is analyzed by ab initio calculations and modeled as an electronic device. Several clocked devices have been partitioned into clock zones and analyzed: the binary wire, the bus, the inverter, and the majority voter. The proposed modification of SCERPA enables linking the functional behavior of the clocked devices to molecular physics, becoming a possible tool for the eventual physical design verification of emerging FCN devices. The algorithm provides some first quantitative results that highlight the clocked propagation characteristics and provide significant feedback for the future implementation of molecular FCN circuits.

中文翻译:

钟控分子场耦合纳米计算的SCERPA模拟

在提议用于CMOS后计算的所有可能技术中,分子场耦合纳米计算(FCN)是最有前途的技术之一。信息传播依赖于单个分子之间的静电相互作用,从而克服了对电子传输的需求,从而大大降低了能量耗散。预期的工作频率非常高,可以通过引入有效的信息传播管道来实现高吞吐量。流水线可以通过添加一个外部时钟信号来实现,该时钟信号控制数据的传播并使传输绝热。在本文中,我们将以前引入的用于分析具有均匀时钟场的分子电路的自洽静电势能算法(SCERPA)扩展到时钟分子设备。单分子通过从头开始计算并建模为电子设备。几个时钟设备已被划分为多个时钟区域并进行了分析:二进制线,总线,逆变器和多数表决器。拟议的SCERPA修改能够将时钟设备的功能行为与分子物理学联系起来,从而成为新兴FCN设备最终物理设计验证的可能工具。该算法提供了一些第一定量结果,这些结果突出了时钟传播特性,并为分子FCN电路的未来实现提供了重要的反馈。
更新日期:2021-02-26
down
wechat
bug