当前位置: X-MOL 学术arXiv.cs.NA › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lie Group integrators for mechanical systems
arXiv - CS - Numerical Analysis Pub Date : 2021-02-25 , DOI: arxiv-2102.12778
Elena Celledoni, Ergys Çokaj, Andrea Leone, Davide Murari, Brynjulf Owren

Since they were introduced in the 1990s, Lie group integrators have become a method of choice in many application areas. These include multibody dynamics, shape analysis, data science, image registration and biophysical simulations. Two important classes of intrinsic Lie group integrators are the Runge--Kutta--Munthe--Kaas methods and the commutator free Lie group integrators. We give a short introduction to these classes of methods. The Hamiltonian framework is attractive for many mechanical problems, and in particular we shall consider Lie group integrators for problems on cotangent bundles of Lie groups where a number of different formulations are possible. There is a natural symplectic structure on such manifolds and through variational principles one may derive symplectic Lie group integrators. We also consider the practical aspects of the implementation of Lie group integrators, such as adaptive time stepping. The theory is illustrated by applying the methods to two nontrivial applications in mechanics. One is the N-fold spherical pendulum where we introduce the restriction of the adjoint action of the group $SE(3)$ to $TS^2$, the tangent bundle of the two-dimensional sphere. Finally, we show how Lie group integrators can be applied to model the controlled path of a payload being transported by two rotors. This problem is modeled on $\mathbb{R}^6\times \left(SO(3)\times \mathfrak{so}(3)\right)^2\times (TS^2)^2$ and put in a format where Lie group integrators can be applied.

中文翻译:

Lie Group机械系统集成商

自1990年代推出以来,Lie集团集成商已成为许多应用领域的一种选择方法。这些包括多体动力学,形状分析,数据科学,图像配准和生物物理模拟。内在李群积分器的两个重要类别是Runge-Kutta-Munthe-Kaas方法和无换向子Lie群积分器。我们简要介绍了这些方法类别。哈密​​顿量的框架对于许多机械问题很有吸引力,特别是我们可以考虑李群积分器来解决李群同切束上的问题,其中可能存在许多不同的公式。在这样的流形上有一个自然的辛结构,通过变分原理,可以得出辛李群积分器。我们还考虑了李群集成器实施的实际方面,例如自适应时间步长。通过将该方法应用于力学中的两个非平凡应用来说明该理论。一个是N折球摆,在这里我们引入了将组$ SE(3)$的伴随作用限制为$ TS ^ 2 $(二维球面的切线束)的限制。最后,我们展示了如何使用李群积分器来建模由两个转子传输的有效载荷的受控路径。此问题以$ \ mathbb {R} ^ 6 \ times \ left(SO(3)\ times \ mathfrak {so}(3)\ right)^ 2 \ times(TS ^ 2)^ 2 $为模型,并放入一种可以应用李群集成器的格式。一个是N折球摆,在这里我们引入了将组$ SE(3)$的伴随作用限制为$ TS ^ 2 $(二维球面的切线束)的限制。最后,我们展示了如何使用李群积分器来模拟由两个转子传输的有效载荷的受控路径。此问题以$ \ mathbb {R} ^ 6 \ times \ left(SO(3)\ times \ mathfrak {so}(3)\ right)^ 2 \ times(TS ^ 2)^ 2 $为模型,并放入一种可以应用李群集成器的格式。一个是N折球摆,在这里我们引入了将组$ SE(3)$的伴随作用限制为$ TS ^ 2 $(二维球面的切线束)的限制。最后,我们展示了如何使用李群积分器来建模由两个转子传输的有效载荷的受控路径。此问题以$ \ mathbb {R} ^ 6 \ times \ left(SO(3)\ times \ mathfrak {so}(3)\ right)^ 2 \ times(TS ^ 2)^ 2 $为模型,并放入一种可以应用李群集成器的格式。
更新日期:2021-02-26
down
wechat
bug