当前位置: X-MOL 学术J. Laser Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Laser cladding of nickel base hardfacing material: Material analyses and manufacturing process evaluation on a scale one demonstrator
Journal of Laser Applications ( IF 1.7 ) Pub Date : 2021-02-01 , DOI: 10.2351/7.0000305
P. Aubry 1 , C. Blanc 1 , I. Demirci 2 , G. Rolland 3 , F. Rouillard 4 , M. Blat-Yriex 3 , T. Marlaud 5 , L. Nicolas 6 , B. Bassem 1 , H. Maskrot 1
Affiliation  

In fast neutron reactors, contact areas of moving parts usually require cobalt-free hardfacing coatings, as cobalt is highly activated under neutron flux. This is particularly critical for the insert holes of the diagrid for the positioning of the hexagonal fuel tubes that have to be internally coated. In this article, we propose to present the development of the cobalt-free hardfacing material up to the manufacturing of the inner clads with a specific deep laser cladding nozzle. In previous presentations, laser cladding has been identified as a deposition process that could increase the performances of the hardfacing materials compared to the standard process (Plasma Transferred Arc Welding). In parallel, the potential interest of some nickel base materials such as Colmonoy® 52 or Tribaloy® T700 has been demonstrated. Unfortunately, the deposition of these fragile alloys requires a preheating of the substrate over 450 °C. More recently, Nucalloy® 453, a new hardfacing nickel base alloy has been evaluated and demonstrated simpler deposition conditions that requires lower preheating temperature (<300 °C). The article presents the evaluation of Nucalloy® 453 with material analysis and wear tests. The microstructural characterization is compared to Colmonoy® 52, which is a similar NiFeCrSiBC alloy. Finally, the laser cladding of a scale one demonstrator is presented: two inner zones of a 1 m cylinder of 100 mm diameter are laser cladded, thanks to a deep cladding nozzle. The advantage of the laser cladding process is compared to Plasma Arc Transferred Welding.

中文翻译:

镍基堆焊材料的激光熔覆:一级演示器上的材料分析和制造工艺评估

在快中子反应堆中,运动部件的接触区域通常需要无钴表面硬化涂层,因为钴在中子通量下高度活化。这对于用于定位必须进行内部涂层的六边形燃料管的斜肋板的插入孔尤其重要。在本文中,我们建议介绍无钴堆焊材料的发展,直至制造具有特定深激光熔覆喷嘴的内包层。在之前的介绍中,激光熔覆已被确定为一种沉积工艺,与标准工艺(等离子转移弧焊)相比,它可以提高表面硬化材料的性能。与此同时,一些镍基材料(如 Colmonoy® 52 或 Tribaloy® T700)的潜在利益也得到了证明。很遗憾,这些易碎合金的沉积需要将基材预热到 450 °C 以上。最近,对一种新型表面硬化镍基合金 Nucalloy® 453 进行了评估,并展示了更简单的沉积条件,需要更低的预热温度 (<300 °C)。本文通过材料分析和磨损测试对 Nucalloy® 453 进行了评估。将微观结构特征与 Colmonoy® 52 进行比较,后者是一种类似的 NiFeCrSiBC 合金。最后,展示了一级演示器的激光熔覆:由于深熔覆喷嘴,1 m 直径 100 mm 圆柱体的两个内部区域被激光熔覆。激光熔覆工艺的优势与等离子弧转移焊接相比。一种新的表面硬化镍基合金已经过评估并证明了更简单的沉积条件,需要较低的预热温度 (<300 °C)。本文通过材料分析和磨损测试对 Nucalloy® 453 进行了评估。将微观结构特征与 Colmonoy® 52 进行比较,后者是一种类似的 NiFeCrSiBC 合金。最后,展示了一级演示器的激光熔覆:由于深熔覆喷嘴,1 m 直径 100 mm 圆柱体的两个内部区域被激光熔覆。激光熔覆工艺的优势与等离子弧转移焊接相比。一种新的表面硬化镍基合金已经过评估并证明了更简单的沉积条件,需要更低的预热温度 (<300 °C)。本文通过材料分析和磨损测试对 Nucalloy® 453 进行了评估。将微观结构特征与 Colmonoy® 52 进行比较,后者是一种类似的 NiFeCrSiBC 合金。最后,展示了一级演示器的激光熔覆:由于深熔覆喷嘴,1 m 直径 100 mm 圆柱体的两个内部区域被激光熔覆。激光熔覆工艺的优势与等离子弧转移焊接相比。将微观结构特征与 Colmonoy® 52 进行比较,后者是一种类似的 NiFeCrSiBC 合金。最后,展示了一级演示器的激光熔覆:由于深熔覆喷嘴,1 m 直径 100 mm 圆柱体的两个内部区域被激光熔覆。激光熔覆工艺的优势与等离子弧转移焊接相比。将微观结构特征与 Colmonoy® 52 进行比较,后者是一种类似的 NiFeCrSiBC 合金。最后,展示了一级演示器的激光熔覆:由于深熔覆喷嘴,1 m 直径 100 mm 圆柱体的两个内部区域被激光熔覆。激光熔覆工艺的优势与等离子弧转移焊接相比。
更新日期:2021-02-01
down
wechat
bug