当前位置: X-MOL 学术Phys. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
C-TOL: Convex triangulation for optimal node localization with weighted uncertainties
Physical Communication ( IF 2.0 ) Pub Date : 2021-02-26 , DOI: 10.1016/j.phycom.2021.101300
Prateek , Rajeev Arya

There is always a need to reduce localization error in any wireless sensor network (WSN), and our aim is to observe the impact of localization uncertainty on network awareness. When nodes are deployed in a 2D plane and their l2-norm ranged triangulations are found, usually the unweighted localization uncertainty values become absurdly large with large triangulation cases. Moreover, there is no regard for the disparity between the lengths of any two links on the localization uncertainty. The upper bound of uncertainty keeps on rising with formation of asymmetric node triangulations with longer internodal distances and sharper vertices. To address this gap, a convex combination weighted approach (C-TOL, standing for Convex-Triangulation for Optimal node Localization) for solving the localization uncertainty problem is described here. The advantage of the proposed method is shown with the help of rigorous mathematical analysis of weighted uncertainty behaviour. The relationship of sensor node symmetry with triangulation uncertainty is formulated algebraically by considering both symmetric as well as asymmetric triangulations. Cramer Rao bound is derived to justify estimation under triangulation uncertainty. This approach paves the way for the WSN to prioritize different kinds of triangulations. Numerical results reveal that the weighted method prefers triangulations with more symmetry; hence it consistently achieves significantly lower values of mean and standard deviations than the existing unweighted localization technique, especially for densely connected sensor networks. Moreover, the proposed method shows robust localization performance for sparsely deployed networks as well, when compared to recent methods in literature.



中文翻译:

C-TOL:凸三角剖分,可在具有加权不确定性的情况下实现最佳节点定位

始终需要减少任何无线传感器网络(WSN)中的定位错误,我们的目标是观察定位不确定性对网络意识的影响。当节点部署在2D平面中时,2个-范数范围内的三角剖分被发现,通常在大三角剖分情况下,未加权的定位不确定性值变得异常大。此外,在定位不确定性上,无需考虑任何两个链接的长度之间的差异。随着节点间距离和顶点更尖的不对称节点三角剖分的形成,不确定性的上限不断提高。为了解决这个差距,这里描述了一种凸组合加权方法(C-TOL,代表最优节点定位的凸三角剖分),用于解决定位不确定性问题。借助加权不确定性行为的严格数学分析,显示了所提出方法的优势。通过考虑对称三角剖分和非对称三角剖分,以代数方式表示传感器节点对称性与三角剖分不确定性的关系。推导了Cramer Rao界以证明三角测量不确定性下的估计合理。这种方法为WSN优先划分不同类型的三角剖析铺平了道路。数值结果表明,加权法更倾向于采用三角剖分法,对称性更高。因此,与现有的未加权定位技术相比,它始终能够实现均值和标准差的明显更低的值,尤其是对于密集连接的传感器网络而言。此外,与文献中的最新方法相比,所提出的方法对于稀疏部署的网络也显示出强大的本地化性能。推导了Cramer Rao界以证明三角测量不确定性下的估计合理性。这种方法为WSN优先划分不同类型的三角剖析铺平了道路。数值结果表明,加权法更倾向于采用三角剖分法,对称性更高。因此,与现有的未加权定位技术相比,它始终能够实现均值和标准差的明显更低的值,尤其是对于密集连接的传感器网络而言。此外,与文献中的最新方法相比,该方法对于稀疏部署的网络也显示出强大的本地化性能。推导了Cramer Rao界以证明三角测量不确定性下的估计合理性。这种方法为WSN优先划分不同类型的三角剖析铺平了道路。数值结果表明,加权法更倾向于采用三角剖分法,对称性更高。因此,与现有的未加权定位技术相比,它始终能够实现均值和标准差的明显更低的值,尤其是对于密集连接的传感器网络而言。此外,与文献中的最新方法相比,所提出的方法对于稀疏部署的网络也显示出强大的本地化性能。因此,与现有的未加权定位技术相比,它始终能够实现均值和标准差的明显更低的值,尤其是对于密集连接的传感器网络而言。此外,与文献中的最新方法相比,所提出的方法对于稀疏部署的网络也显示出强大的本地化性能。因此,与现有的未加权定位技术相比,它始终能够实现均值和标准差的明显更低的值,尤其是对于密集连接的传感器网络而言。此外,与文献中的最新方法相比,所提出的方法对于稀疏部署的网络也显示出强大的本地化性能。

更新日期:2021-03-02
down
wechat
bug