当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of mixed convection flow and heat transfer in the lid-driven triangular cavity with different obstacle configurations
International Communications in Heat and Mass Transfer ( IF 7 ) Pub Date : 2021-02-26 , DOI: 10.1016/j.icheatmasstransfer.2021.105202
Pei-Ying Xiong , Aamir Hamid , Kaleem Iqbal , M. Irfan , Masood Khan

There are several industrial applications, particularly lid-driven walls, for mixed convection heat transfer characteristics across various cavities. In order to increase the effectiveness of cooling, electrical, electronic and nuclear devices and to monitor the fluid flow and heat exchange of solar thermal installations and thermal storage, such a problem requires further investigation. The main goal of this profound study is to examine the convective heat transfer nature of thermal convection on Newtonian MHD fluid in a lid-driven triangular cavity subjected to heating by a thick triangular wall, including the effects of varying Richardson number, Reynolds number, Hartmann number, and cold circular obstacle. Graphical illustration shows that the upper wall having temperature Th is moving from left to right, whereas inclined sidewalls are adiabatic. Further, a cold circular obstacle containing temperature T∗∗ is placed near the left and right wall of the triangular cavity with T∗∗ < Th. The governing flow equations are tackled by the Galerkin Finite Element Method (GFEM) to prepare the desired results. Velocity contours, isotherms and heat transfer rates demonstrate flow kinematics and heat transport processes. The high estimate of the Reynolds number has been found to provide a decent rate of convective heat transfer to a good liquid progression. For a higher number of Grashof, which achieves the maximum convection intensity, it is checked that natural convection dominates within the convection system. The Richardson number is a rising function of the Nusselt number, while the opposite trend is observed due to the rise in the Hartmann number.



中文翻译:

不同障碍物配置的盖子驱动三角腔内对流和传热混合的数值模拟

有多种工业应用,特别是盖子驱动的壁,用于跨各种型腔的混合对流传热特性。为了提高冷却,电气,电子和核设备的效率并监视太阳能热设施和储热系统的流体流动和热交换,需要进一步研究这一问题。这项深入研究的主要目标是研究热对流在由厚三角壁加热的盖驱动三角腔中在牛顿MHD流体上的对流传热性质,包括变化的Richardson数,Reynolds数,Hartmann效应数量,冷循环障碍物。图形显示,上壁的温度为T h从左向右移动,而倾斜的侧壁是绝热的。此外,在三角形腔的左右壁附近放置一个温度为T ∗∗的冷圆形障碍物,其中T  <T h。通过Galerkin有限元方法(GFEM)处理控制流方程,以准备所需的结果。速度轮廓,等温线和传热速率证明了流动运动学和传热过程。已经发现对雷诺数的高估计可提供对流传热的良好速率,以达到良好的液体进展。对于达到最大对流强度的更大数量的Grashof,要检查自然对流在对流系统中是否占主导地位。理查森数是努塞尔特数的上升函数,而由于哈特曼数的上升,则观察到相反的趋势。

更新日期:2021-02-26
down
wechat
bug