当前位置: X-MOL 学术Calc. Var. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Existence and symmetry breaking of ground state solutions for Schrödinger–Poisson systems
Calculus of Variations and Partial Differential Equations ( IF 2.1 ) Pub Date : 2021-02-26 , DOI: 10.1007/s00526-021-01953-3
Tsung-fang Wu

We study the Schrödinger–Poisson system:

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+u+\lambda \phi u=a\left( x\right) \left| u\right| ^{p-2}u &{} \text { in }{{\mathbb {R}}}^{3}, \\ -\Delta \phi =u^{2} &{} \ \text {in }{{\mathbb {R}}}^{3}, \end{array} \right. \end{aligned}$$

where parameter \(\lambda >0\), \(2<p<3\) and \(a\left( x\right) \) is a positive continuous function in \({{\mathbb {R}}}^{3}\). Assuming that \(a\left( x\right) \ge \lim _{\left| x\right| \rightarrow \infty }a\left( x\right) =a_{\infty }>0\) and other suitable conditions, we explore the energy functional corresponding to the system which is bounded below on \( H^{1}\left( {{\mathbb {R}}}^{3}\right) \) and the existence and multiplicity of positive (ground state) solutions for \(\left[ \frac{A\left( p\right) }{p} a_{\infty }\right] ^{2/\left( p-2\right) }<\lambda \le \left[ \frac{A\left( p\right) }{p}a_{1}\right] ^{2/\left( p-2\right) },\) where \(A\left( p\right) :=2^{\left( 6-p\right) /2}\left( 3-p\right) ^{3-p}\left( p-2\right) ^{\left( p-2\right) }\) and \(a_{\infty }<a_{1}<a_{\max }:=\sup _{x\in {{\mathbb {R}}} ^{3}}a\left( x\right) .\) More importantly, when \(a\left( x\right) =a\left( \left| x\right| \right) \) and \(a\left( 0\right) =a_{\max },\) we establish the existence of non-radial ground state solutions.



中文翻译:

Schrödinger-Poisson系统基态解的存在性和对称性破灭

我们研究Schrödinger-Poisson系统:

$$ \ begin {aligned} \ left \ {\ begin {array} {ll}-\ Delta u + u + \ lambda \ phi u = a \ left(x \ right)\ left | 你\右| ^ {p-2} u&{} \ text {in} {{\ mathbb {R}}} ^ {3},\\-\ Delta \ phi = u ^ {2}&{} \ \ text {in } {{\ mathbb {R}}} ^ {3},\ end {array} \ right。\ end {aligned} $$

其中参数\(\ lambda> 0 \)\(2 <p <3 \)\(a \ left(x \ right)\)\({{\ mathbb {R}}}中的正连续函数^ {3} \)。假设\(a \ left(x \ right)\ ge \ lim _ {\ left | x \ right | \ rightarrow \ infty} a \ left(x \ right)= a _ {\ infty}> 0 \)等在合适的条件下,我们探索与下面\\ H ^ {1} \ left({{\ mathbb {R}}} ^ {3} \ right)\)上界定的系统相对应的能量函数,以及存在性和多重性\(\ left [\ frac {A \ left(p \ right)} {p} a _ {\ infty} \ right] ^ {2 / \ left(p-2 \ right)}的正(基态)解的数量<\ lambda \ le \ left [\ frac {A \ left(p \ right)} {p} a_ {1} \ right] ^ {2 / \ left(p-2 \ right)},\)其中\(A \ left(p \ right):= 2 ^ {\ left(6-p \ right)/ 2} \ left(3-p \ right)^ {3-p} \ left(p-2 \ right )^ {\ left(p-2 \ right)} \)\(a _ {\ infty} <a_ {1} <a _ {\ max}:= \ sup _ {x \ in {{\ mathbb {R} }} ^ {3}} a \ left(x \ right)。\)更重要的是,当\(a \ left(x \ right)= a \ left(\ left | x \ right | \ right)\)\(a \ left(0 \ right)= a _ {\ max},\)我们建立了非径向基态解的存在。

更新日期:2021-02-26
down
wechat
bug