当前位置: X-MOL 学术Arch. Appl. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shear cutting induced residual stresses in involute gears and resulting tooth root bending strength of a fineblanked gear
Archive of Applied Mechanics ( IF 2.2 ) Pub Date : 2021-02-26 , DOI: 10.1007/s00419-021-01915-3
Daniel Müller , Jens Stahl , Anian Nürnberger , Roland Golle , Thomas Tobie , Wolfram Volk , Karsten Stahl

The manufacturing of case-hardened gears usually consists of several complex and expensive steps to ensure high load carrying capacity. The load carrying capacity for the main fatigue failure modes pitting and tooth root breakage can be increased significantly by increasing the near surface compressive residual stresses. In earlier publications, different shear cutting techniques, the near-net-shape-blanking processes (NNSBP’s), were investigated regarding a favorable residual stress state. The influence of the process parameters on the amount of clean cut, surface roughness, hardness and residual stresses was investigated. Furthermore, fatigue bending tests were carried out using C-shaped specimens. This paper reports about involute gears that are manufactured by fineblanking. This NNSBP was identified as suitable based on the previous research, because it led to a high amount of clean cut and favorable residual stresses. For the fineblanked gears of S355MC (1.0976), the die edge radii were varied and the effects on the cut surface geometry, hardness distribution, surface roughness and residual stresses are investigated. The accuracy of blanking the gear geometry is measured, and the tooth root bending strength is determined in a pulsating test rig according to standardized testing methods. It is shown that it is possible to manufacture gears by fineblanking with a high precision comparable to gear hobbing. Additionally, the cut surface properties lead to an increased tooth root bending strength.



中文翻译:

剪切剪切导致渐开线齿轮产生残余应力,并导致细齿齿轮的齿根弯曲强度

表面硬化齿轮的制造通常包括几个复杂且昂贵的步骤,以确保高承载能力。通过增加近表面压缩残余应力,可以显着提高主要疲劳失效模式点蚀和齿根断裂的承载能力。在较早的出版物中,针对有利的残余应力状态,研究了不同的剪切切割技术,近净形冲裁工艺(NNSBP's)。研究了工艺参数对切削量,表面粗糙度,硬度和残余应力的影响。此外,使用C形试样进行了疲劳弯曲试验。本文报告了通过精冲加工制造的渐开线齿轮。根据先前的研究,此NNSBP被确定为合适的,因为它导致大量的整齐切割和有利的残余应力。对于S355MC(1.0976)的精冲齿轮,改变了模具边缘半径,并研究了其对切削表面几何形状,硬度分布,表面粗糙度和残余应力的影响。测量齿轮几何形状的落料精度,并根据标准测试方法在脉动测试装置中确定齿根弯曲强度。结果表明,可以通过滚齿精加工来制造齿轮,其精度可与滚齿相比。另外,切割的表面性质导致增加的齿根弯曲强度。改变模具边缘的半径,并研究其对切削表面几何形状,硬度分布,表面粗糙度和残余应力的影响。测量齿轮几何形状的落料精度,并根据标准测试方法在脉动测试装置中确定齿根弯曲强度。结果表明,可以通过滚齿精加工来制造齿轮,其精度可与滚齿相比。另外,切割的表面性质导致增加的齿根弯曲强度。改变模具边缘的半径,并研究其对切削表面几何形状,硬度分布,表面粗糙度和残余应力的影响。测量齿轮几何形状的落料精度,并根据标准测试方法在脉动测试装置中确定齿根弯曲强度。结果表明,可以通过滚齿精加工来制造齿轮,其精度可与滚齿相比。另外,切割的表面性质导致增加的齿根弯曲强度。结果表明,可以通过滚齿精加工来制造齿轮,其精度可与滚齿相比。另外,切割的表面性质导致增加的齿根弯曲强度。结果表明,可以通过滚齿精加工来制造齿轮,其精度可与滚齿相比。另外,切割的表面性质导致增加的齿根弯曲强度。

更新日期:2021-02-26
down
wechat
bug