当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface characterization and resistance changes of silver-nanowire networks upon atmospheric plasma treatment
Applied Surface Science ( IF 6.3 ) Pub Date : 2021-02-25 , DOI: 10.1016/j.apsusc.2021.149362
Lewis O. Akinsinde , Tomke E. Glier , Matthias Schwartzkopf , Marie Betker , Matz Nissen , Maximilian Witte , Sarah Scheitz , Christian Nweze , Benjamin Grimm-Lebsanft , Marc Gensch , Andrei Chumakov , Ivan Baev , Ulrich Schürmann , Torben Dankwort , Frank Fischer , Michael Martins , Stephan V. Roth , Lorenz Kienle , Michael Rübhausen

Highly conductive silver-nanowire (Ag-NW) networks are used in composite materials as conductive channels. Their resistance tuning can be accomplished by changing the Ag-NW concentration, and, therefore, changing the network structure. In this study, an alternative pathway to resistance engineering of conductive Ag-NW networks by local atmospheric plasma treatment is employed. The corresponding changes in nanowire network morphology and crystallinity as a function of plasma etching time are investigated by time-resolved grazing-incidence X-ray scattering, field-effect scanning electron microscopy, and X-ray photoelectron spectroscopy. Three characteristic etching phases are identified. The first two phases enable the controlled engineering of the electrical properties with different rates of resistance change, which results from changes in nanowire shape, network morphology, and different oxidation rates. Phase III is characterized by pronounced fragmentation and destruction of the Ag-NW networks. These results show the feasibility of atmospheric plasma treatments to tune the local electrical properties of conductive Ag-NW networks. Furthermore, we present a physical Monte Carlo model explaining the electrical network properties as a function of plasma etching time based on the network connectivity and a constant plasma etching rate of 570 ng s−1 cm−2.



中文翻译:

大气等离子体处理后银纳米线网络的表面表征和电阻变化

高导电性的银纳米线(Ag-NW)网络在复合材料中用作导电通道。可以通过改变Ag-NW浓度并因此改变网络结构来实现其电阻调整。在这项研究中,采用了通过局部大气等离子体处理传导性Ag-NW网络电阻工程的替代途径。通过时间分辨掠入射X射线散射,场效应扫描电子显微镜和X射线光电子能谱研究了纳米线网络的形态和结晶度随等离子刻蚀时间的变化。确定了三个特征蚀刻阶段。前两个阶段可实现电特性的受控工程设计,并具有不同的电阻变化率,这是由于纳米线形状,网络形态和不同的氧化速率的变化引起的。第三阶段的特征是明显分裂和破坏了Ag-NW网络。这些结果表明,大气等离子体处理可调节导电Ag-NW网络的局部电性能。此外,我们提出了一个物理蒙特卡洛模型,该模型根据网络连通性和570 ng s的恒定等离子刻蚀速率,解释了作为等离子刻蚀时间的函数的电网络特性-1厘米-2

更新日期:2021-02-25
down
wechat
bug