当前位置: X-MOL 学术Aerobiologia › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Live pine pollen in rainwater: reconstructing its long-range transport
Aerobiologia ( IF 2.2 ) Pub Date : 2021-02-25 , DOI: 10.1007/s10453-021-09697-5
Claire G. Williams , Philippe Barnéoud

Raindrops brim with pollen even when there is no ambient local pollen. How does this nonlocal pollen get inside rain? The likely answer is long-range transport beneath or inside clouds. To test this hypothesis, we captured rain-delivered pollen on Ocracoke Island, NC, USA over a 12-day interval before local pine pollen release then reconstructed its trajectory and its atmospheric exposure conditions. Findings were as follows: four rain episodes yielded a total of 632 pollen grains of which 6.7% germinated. To find pollen sources, we first identified pollen-releasing forested areas using a predictive heat sum equation for each rain episode. Next, we constructed the backward trajectory for air parcels carrying rain-delivered pollen from those forests using the MLDP atmospheric transport and dispersion model. Nonlocal sources were located at distances up to 300 km from Ocracoke Island and distances lessened with each successive episode. Below-cloud transport time was 8 and 17 h for Episodes A and B, respectively. Pollen grains were exposed to harsh atmospheric conditions during below-cloud transport, yet some grains still germinated. Atmospheric turbulence patterns changed for each episode, so distance from pollen source was poorly correlated with pollen transport time. Pollen germination was not closely correlated with either distances or transport time. In-cloud transport was more likely for pollen sampled during Episodes C and D. Pine pollen, although rarely allergenic, brings fresh insights into how atmospheric events can trigger human respiratory distress.



中文翻译:

雨水中的活松花粉:重建其远距离运输

即使没有周围的本地花粉,雨滴也会充满花粉。这种非本地花粉如何进入雨水?可能的答案是在云层之下或内部的远程传输。为了检验这一假设,我们在当地松花粉释放然后重建其轨迹和大气暴露条件之前的12天间隔内,在美国北卡罗来纳州奥克拉科克岛上采集了雨水输送的花粉。结果如下:四次降雨共产生632个花粉粒,其中6.7%发芽。为了找到花粉来源,我们首先使用预测性的热量总和方程来确定每个降雨事件的释放花粉的森林区域。接下来,我们使用MLDP大气传输和扩散模型构建了从这些森林中运送雨水传播的花粉的空气小包的向后轨迹。非本地源位于距欧克拉科克岛(Ocracoke Island)最多300公里的位置,并且随着每个连续事件的发生而减小的距离。情节A和情节B在云下的运输时间分别为8小时和17小时。在低于云层的运输过程中,花粉谷物暴露于恶劣的大气条件下,但仍有一些谷物发芽。每次发生时,大气湍流模式都会发生变化,因此距花粉源的距离与花粉运输时间之间的关联性很差。花粉的发芽与距离或运输时间均不密切相关。在情节C和情节D中采集的花粉更有可能在云中运输。尽管松花粉很少引起过敏,但它为大气事件如何引发人类呼吸窘迫提供了新的见解。情节A和情节B在云下的运输时间分别为8小时和17小时。在低于云层的运输过程中,花粉谷物暴露于恶劣的大气条件下,但仍有一些谷物发芽。每次发生时,大气湍流模式都会发生变化,因此距花粉源的距离与花粉运输时间之间的关联性很差。花粉的发芽与距离或运输时间均不密切相关。在情节C和情节D中采集的花粉更有可能在云中运输。尽管松花粉很少引起过敏,但它为大气事件如何引发人类呼吸窘迫提供了新的见解。情节A和情节B在云下的运输时间分别为8小时和17小时。在低于云层的运输过程中,花粉谷物暴露于恶劣的大气条件下,但仍有一些谷物发芽。每次发生时,大气湍流模式都会发生变化,因此距花粉源的距离与花粉运输时间之间的关联性很差。花粉的发芽与距离或运输时间均不密切相关。在情节C和情节D中采集的花粉更有可能在云中运输。尽管松花粉很少引起过敏,但它为大气事件如何引发人类呼吸窘迫提供了新的见解。每次发生时,大气湍流模式都会发生变化,因此距花粉源的距离与花粉运输时间之间的关联性很差。花粉的发芽与距离或运输时间均不密切相关。在情节C和情节D中采集的花粉更有可能在云中运输。尽管松花粉很少引起过敏,但它为大气事件如何引发人类呼吸窘迫提供了新的见解。每次发生时,大气湍流模式都会发生变化,因此距花粉源的距离与花粉运输时间之间的关联性很差。花粉的发芽与距离或运输时间均不密切相关。在情节C和情节D中采集的花粉更有可能在云中运输。尽管松花粉很少引起过敏,但它为大气事件如何引发人类呼吸窘迫提供了新的见解。

更新日期:2021-02-25
down
wechat
bug