当前位置: X-MOL 学术Wirel. Commun. Mob. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sparse Array Design for DOA Estimation of Non-Gaussian Signals: From Global Postage-Stamp Problem Perspective
Wireless Communications and Mobile Computing Pub Date : 2021-02-24 , DOI: 10.1155/2021/6616112
Changbo Ye 1, 2 , Luo Chen 1, 2, 3 , Beizuo Zhu 1, 2
Affiliation  

In this paper, a sparse array design problem for non-Gaussian signal direction of arrival (DOA) estimation is investigated. Compared with conventional second-order cumulant- (SOC-) based methods, fourth-order cumulant- (FOC-) based methods achieve improved DOA estimation performance by utilizing all information from received non-Gaussian sources. Considering the virtual sensor location of vectorized FOC-based methods can be calculated from the second order difference coarray of sum coarray (2-DCSC) of physical sensors, it is important to devise a sparse array design principle to obtain extended degree of freedom (DOF). Based on the properties of unfolded coprime linear array (UCLA), we formulate the sparse array design problem as a global postage-stamp problem (GPSP) and then present an array design method from GPSP perspective. Specifically, for vectorized FOC-based methods, we divide the process of obtaining physical sensor location into two steps; the first step is to obtain the two consecutive second order sum coarrays (2-SC), which can be modeled as GPSP, and the solutions to GPSP can also be utilized to determine the physical sensor location sets without interelement spacing coefficients. The second step is to adjust the physical sensor sets by multiplying the appropriate coprime coefficients, which is determined by the structure of UCLA. In addition, the 2-DCSC can be calculated from physical sensors directly, and the properties of UCLA are given to confirm the degree of freedom (DOF) of the proposed geometry. Simulation results validate the effectiveness and superiority of the proposed array geometry.

中文翻译:

非高斯信号DOA估计的稀疏阵列设计:从全球邮资邮票问题的角度看

本文研究了非高斯信号到达方向(DOA)估计的稀疏阵列设计问题。与传统的基于二阶累积量(SOC-)的方法相比,基于四阶累积量(FOC-)的方法通过利用从接收到的非高斯源中获得的所有信息来提高DOA估计性能。考虑到可以从物理传感器的和协阵列(2-DCSC)的二阶差分协阵列计算出基于矢量FOC的方法的虚拟传感器位置,因此重要的是设计一种稀疏阵列设计原理以获得扩展的自由度(DOF )。基于展开式共质数线性阵列(UCLA)的性质,我们将稀疏阵列设计问题表述为全球邮资邮票问题(GPSP),然后从GPSP角度提出一种阵列设计方法。具体来说,对于基于矢量FOC的方法,我们将获取物理传感器位置的过程分为两个步骤:第一步是获得可以建模为GPSP的两个连续的二阶和协阵列(2-SC),并且GPSP的解决方案也可以用于确定没有元素间距系数的物理传感器位置集。第二步是通过乘以适当的互质系数来调整物理传感器集,该系数由UCLA的结构确定。此外,可以直接从物理传感器计算出2-DCSC,并给出UCLA的属性以确认所提议几何形状的自由度(DOF)。仿真结果验证了所提出的阵列几何形状的有效性和优越性。我们将获取物理传感器位置的过程分为两个步骤;第一步是获得两个可以建模为GPSP的连续的二阶和协阵列(2-SC),并且GPSP的解决方案也可以用于确定物理传感器位置集,而无需元素间隔系数。第二步是通过乘以适当的互质系数来调整物理传感器集,该系数由UCLA的结构确定。另外,可以直接从物理传感器计算出2-DCSC,并给出UCLA的属性以确认所提议几何形状的自由度(DOF)。仿真结果验证了所提出的阵列几何形状的有效性和优越性。我们将获取物理传感器位置的过程分为两个步骤;第一步是获得两个可以建模为GPSP的连续的二阶和协阵列(2-SC),并且GPSP的解决方案也可以用于确定物理传感器位置集,而无需元素间隔系数。第二步是通过乘以适当的互质系数来调整物理传感器集,该系数由UCLA的结构确定。此外,可以直接从物理传感器计算出2-DCSC,并给出UCLA的属性以确认所提出几何结构的自由度(DOF)。仿真结果验证了所提出的阵列几何形状的有效性和优越性。可以建模为GPSP,并且GPSP的解决方案也可以用于确定没有元素间距系数的物理传感器位置集。第二步是通过乘以适当的互质系数来调整物理传感器集,该系数由UCLA的结构确定。此外,可以直接从物理传感器计算出2-DCSC,并给出UCLA的属性以确认所提出几何结构的自由度(DOF)。仿真结果验证了所提出的阵列几何形状的有效性和优越性。可以建模为GPSP,并且GPSP的解决方案也可以用于确定没有元素间距系数的物理传感器位置集。第二步是通过乘以适当的互质系数来调整物理传感器集,该系数由UCLA的结构确定。此外,可以直接从物理传感器计算出2-DCSC,并给出UCLA的属性以确认所提出几何结构的自由度(DOF)。仿真结果验证了所提出的阵列几何形状的有效性和优越性。由UCLA的结构决定。另外,可以直接从物理传感器计算出2-DCSC,并给出UCLA的属性以确认所提议几何形状的自由度(DOF)。仿真结果验证了所提出的阵列几何形状的有效性和优越性。由UCLA的结构决定。另外,可以直接从物理传感器计算出2-DCSC,并给出UCLA的属性以确认所提议几何形状的自由度(DOF)。仿真结果验证了所提出的阵列几何形状的有效性和优越性。
更新日期:2021-02-24
down
wechat
bug