当前位置: X-MOL 学术Nat. Protoc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Making bioinspired 3D-printed autonomic perspiring hydrogel actuators
Nature Protocols ( IF 13.1 ) Pub Date : 2021-02-24 , DOI: 10.1038/s41596-020-00484-z
Anand Kumar Mishra , Wenyang Pan , Emmanuel P. Giannelis , Robert F. Shepherd , Thomas J. Wallin

To mitigate the adverse effects of elevated temperatures, conventional rigid devices use bulky radiators, heat sinks and fans to dissipate heat from sensitive components. Unfortunately, these thermoregulation strategies are incompatible with soft robots, a growing field of technology that, like biology, builds compliant and highly deformable bodies from soft materials to enable functional adaptability. Here, we design fluidic elastomer actuators that autonomically perspire at elevated temperatures. This strategy incurs operational penalties (i.e., decreased actuation efficiency and loss of hydraulic fluid) but provides for thermoregulation in soft systems. In this bioinspired approach, we 3D-print finger-like actuators from smart gels with embedded micropores that autonomically dilate and contract in response to temperature. During high-temperature operation, the internal hydraulic fluid flows through the dilated pores, absorbs heat and vaporizes. Upon cooling, the pores contract to restrict fluid loss and restore operation. To assess the thermoregulatory performance, this protocol uses non-invasive thermography to measure the local temperatures of the robot under varied conditions. A mathematical model based on Newton’s law of cooling quantifies the cooling performance and enables comparison between competing designs. Fabrication of the sweating actuator usually takes 3–6 h, depending on size, and can provide >100 W/kg of additional cooling capacity.



中文翻译:

制作受生物启发的 3D 打印自主排汗水凝胶致动器

为了减轻高温的不利影响,传统的刚性设备使用笨重的散热器、散热器和风扇来散发敏感组件的热量。不幸的是,这些体温调节策略与软机器人不兼容,软机器人是一个不断发展的技术领域,就像生物学一样,它可以用软材料构建柔顺且高度可变形的身体,以实现功能适应性。在这里,我们设计了在高温下自动出汗的流体弹性体致动器。这种策略会导致操作损失(即,降低的驱动效率和液压流体的损失),但会在软系统中提供温度调节。在这种受生物启发的方法中,我们用智能凝胶 3D 打印手指状致动器,该致动器具有嵌入式微孔,这些微孔会根据温度自动扩张和收缩。在高温运行期间,内部液压油流经扩张的孔隙,吸收热量并汽化。冷却后,孔隙收缩以限制流体损失并恢复运行。为了评估体温调节性能,该协议使用非侵入性热成像来测量机器人在不同条件下的局部温度。基于牛顿冷却定律的数学模型量化了冷却性能,并能够在竞争设计之间进行比较。发汗致动器的制造通常需要 3-6 小时,具体取决于尺寸,并且可以提供 >100 W/kg 的额外冷却能力。为了评估体温调节性能,该协议使用非侵入性热成像来测量机器人在不同条件下的局部温度。基于牛顿冷却定律的数学模型量化了冷却性能,并能够在竞争设计之间进行比较。发汗致动器的制造通常需要 3-6 小时,具体取决于尺寸,并且可以提供 >100 W/kg 的额外冷却能力。为了评估体温调节性能,该协议使用非侵入性热成像来测量机器人在不同条件下的局部温度。基于牛顿冷却定律的数学模型量化了冷却性能,并能够在竞争设计之间进行比较。发汗致动器的制造通常需要 3-6 小时,具体取决于尺寸,并且可以提供 >100 W/kg 的额外冷却能力。

更新日期:2021-02-24
down
wechat
bug