当前位置: X-MOL 学术J. Thermophys. Heat Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling Laminar-to-Turbulent Transition in the Panel Test Facility Arcjet
Journal of Thermophysics and Heat Transfer ( IF 1.1 ) Pub Date : 2021-02-23 , DOI: 10.2514/1.t6098
Joshua R. Finkbeiner 1
Affiliation  

A computational fluid dynamics (CFD) laminar-to-turbulence transition model was developed for the NASA Ames Research Center’s 20 MW Panel Test Facility (PTF). Surface pressure, heat flux to a water-cooled plate, and surface temperature on a tile plate coated with reaction-cured glass were measured across several conditions in the facility and compared with laminar and fully turbulent CFD simulations. The potential for bypass transition in the PTF nozzle was assessed via application of the Langtry–Menter four-equation transitional shear-stress transport (SST) model. Results from the transition model were inconsistent with measurements. Flow interaction with a boundary-conditioning plate feature inside the nozzle was also investigated as a potential source of laminar-to-turbulent transition, using two turbulence models with specified transition locations. The Baldwin–Lomax turbulence model was configured to simulate a transition at the upstream edge of the boundary conditioning plate and produced results consistent with the surface pressure measurements, but not the cold-wall heat flux. Finally, the SST turbulence model was calibrated to transition at the upstream edge of the boundary conditioning plate and produced results consistent with both the surface pressure and cold-wall heat flux measurements. The SST-based model demonstrated reasonable agreement with surface temperature measurements on the reaction-cured glass tile, albeit with some discrepancies.



中文翻译:

在面板测试设备Arcjet中为层流到湍流过渡建模

为NASA Ames研究中心的20 MW面板测试设施(PTF)开发了计算流体动力学(CFD)层流到湍流的转换模型。在设备中的多个条件下,测量了表面压力,通向水冷板的热通量以及涂有反应固化玻璃的瓷砖板上的表面温度,并将其与层流和完全湍流的CFD模拟进行了比较。通过应用Langtry-Menter四方程过渡剪切应力传输(SST)模型评估了PTF喷嘴中旁路过渡的可能性。过渡模型的结果与测量结果不一致。还研究了与喷嘴内部边界调节板特征的流动相互作用,作为层流向湍流过渡的潜在来源,使用两个具有指定过渡位置的湍流模型。Baldwin-Lomax湍流模型被配置为模拟边界条件调节板上游边缘的过渡,并产生与表面压力测量结果一致的结果,但与冷壁热通量不一致。最后,对SST湍流模型进行了校准,使其在边界调节板的上游边缘过渡,并产生了与表面压力和冷壁热通量测量结果一致的结果。基于SST的模型与反应固化玻璃砖的表面温度测量值显示出合理的一致性,尽管有一些差异。Baldwin-Lomax湍流模型被配置为模拟边界条件调节板上游边缘的过渡,并产生与表面压力测量结果一致的结果,但与冷壁热通量不一致。最后,对SST湍流模型进行了校准,使其在边界调节板的上游边缘过渡,并产生了与表面压力和冷壁热通量测量结果一致的结果。基于SST的模型与反应固化玻璃砖的表面温度测量值显示出合理的一致性,尽管有一些差异。Baldwin-Lomax湍流模型被配置为模拟边界条件调节板上游边缘的过渡,并产生与表面压力测量结果一致的结果,但与冷壁热通量不一致。最后,对SST湍流模型进行了校准,使其在边界调节板的上游边缘过渡,并产生了与表面压力和冷壁热通量测量结果一致的结果。基于SST的模型与反应固化的玻璃砖的表面温度测量值显示出合理的一致性,尽管有一些差异。校准了SST湍流模型,使其在边界调节板的上游边缘过渡,并产生了与表面压力和冷壁热通量测量结果一致的结果。基于SST的模型与反应固化玻璃砖的表面温度测量值显示出合理的一致性,尽管有一些差异。校准了SST湍流模型,使其在边界调节板的上游边缘过渡,并产生了与表面压力和冷壁热通量测量结果一致的结果。基于SST的模型与反应固化玻璃砖的表面温度测量值显示出合理的一致性,尽管有一些差异。

更新日期:2021-02-24
down
wechat
bug