当前位置: X-MOL 学术J. Geophys. Res. Solid Earth › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrical Resistivity Structure Around the Atotsugawa Fault, Central Japan, Revealed by a New 2‐D Inversion Method Combining Wideband‐MT and Network‐MT Data Sets
Journal of Geophysical Research: Solid Earth ( IF 3.9 ) Pub Date : 2021-02-24 , DOI: 10.1029/2020jb020904
Yoshiya Usui 1 , Makoto Uyeshima 1 , Tsutomu Ogawa 1 , Ryokei Yoshimura 2 , Naoto Oshiman 2 , Satoru Yamaguchi 3 , Hiroaki Toh 4 , Hideki Murakami 5 , Koki Aizawa 6 , Toshiya Tanbo 7 , Yasuo Ogawa 8 , Tadashi Nishitani 9 , Shin’ya Sakanaka 9 , Masaaki Mishina 10 , Hideyuki Satoh 11 , Tada‐nori Goto 12 , Takafumi Kasaya 13, 14 , Toru Mogi 15 , Yusuke Yamaya 16 , Ichiro Shiozaki 17 , Yoshimori Honkura 18
Affiliation  

The Atotsugawa fault is one of the most active faults in Japan, and the strain accumulation at the fault is considered to be caused by an aseismic shear zone in the fluid‐rich lower crust. To identify the shear zone and investigate the origin of the aqueous fluid in the lower crust, we deployed a Network‐MT survey in addition to a conventional wideband‐MT survey around the fault and performed an inversion combining both the MT data sets. In the inversion, by modifying a conventional inversion algorism, we accurately represented kilometer‐scale dipoles of the Network‐MT measurement to provide constraints on the electrical resistivity structure. In the lower crust under the study area, there are localized conductive anomalies below the Atotsugawa fault, the Ushikubi fault, and the Takayama‐Oppara fault zone. Comparing our electrical resistivity structure with the seismic velocity structure, we interpreted that the lower‐crustal conductors are localized ductile shear zones with highly connected fluid. We considered that the localized ductile shear zones are responsible for the strain accumulation along the respective active faults. In addition, in the mantle wedge above the subducting Philippine Sea slab and its downward extension, a highly conductive portion is detected, which may be attributed to the fluid dehydrated from the Philippine Sea slab and/or the Pacific slab. The existence of the large conductive area supports the suggestion of previous seismic and geochemical studies that the fluid of the lower crust around the Atotsugawa fault originated from subducting slabs.

中文翻译:

通过结合宽带MT和网络MT数据集的新型二维反演方法揭示了日本中部原子河川断层周围的电阻率结构

Atotsugawa断层是日本最活跃的断层之一,该断层处的应变累积被认为是由富含流体的下地壳中的一个地震剪切带引起的。为了确定剪切带并调查下地壳中含水流体的起源,我们在断层周围进行了常规的宽带-MT测量之外,还部署了Network-MT测量,并结合了两个MT数据集进行了反演。在反演中,通过修改常规反演算法,我们可以精确表示Network-MT测量的千米尺度偶极子,以提供对电阻率结构的约束。在研究区下方的下地壳中,在Atotsugawa断层,Ushikubi断层和Takayama-Oppara断层带以下存在局部导电异常。将我们的电阻率结构与地震速度结构进行比较,我们认为下地壳导体是具有高度连通流体的局部韧性剪切带。我们认为局部的韧性剪切带是引起沿各自活动断层的应变积累的原因。另外,在俯冲的菲律宾海平板上方的地幔楔及其向下延伸中,检测到高导电部分,这可能归因于从菲律宾海平板和/或太平洋平板中脱水的流体。较大的导电区域的存在支持了以前的地震和地球化学研究的建议,即Atotsugawa断层周围下地壳的流体起源于俯冲板。我们解释说,下地壳导体是具有高度连通流体的局部韧性剪切带。我们认为局部的韧性剪切带是引起沿各自活动断层的应变积累的原因。另外,在俯冲的菲律宾海平板上方的地幔楔及其向下延伸中,检测到高导电部分,这可能归因于从菲律宾海平板和/或太平洋平板中脱水的流体。较大的导电区域的存在支持了以前的地震和地球化学研究的建议,即Atotsugawa断层周围下地壳的流体起源于俯冲板。我们解释说,下地壳导体是具有高度连通流体的局部韧性剪切带。我们认为局部的韧性剪切带是引起沿各自活动断层的应变积累的原因。另外,在俯冲的菲律宾海平板上方的地幔楔及其向下延伸中,检测到高导电部分,这可能归因于从菲律宾海平板和/或太平洋平板中脱水的流体。较大的导电区域的存在支持了以前的地震和地球化学研究的建议,即Atotsugawa断层周围下地壳的流体起源于俯冲板。我们认为局部的韧性剪切带是引起沿各自活动断层的应变积累的原因。另外,在俯冲的菲律宾海平板上方的地幔楔及其向下延伸中,检测到高导电部分,这可能归因于从菲律宾海平板和/或太平洋平板中脱水的流体。较大的导电区域的存在支持了以前的地震和地球化学研究的建议,即Atotsugawa断层周围下地壳的流体起源于俯冲板。我们认为局部的韧性剪切带是引起沿各自活动断层的应变积累的原因。另外,在俯冲的菲律宾海平板上方的地幔楔及其向下延伸中,检测到高导电部分,这可能归因于从菲律宾海平板和/或太平洋平板中脱水的流体。较大的导电区域的存在支持了以前的地震和地球化学研究的建议,即Atotsugawa断层周围下地壳的流体起源于俯冲板。这可能归因于从菲律宾海板块和/或太平洋板块中脱水的流体。较大的导电区域的存在支持了以前的地震和地球化学研究的建议,即Atotsugawa断层周围下地壳的流体起源于俯冲板。这可能归因于从菲律宾海板块和/或太平洋板块中脱水的流体。较大的导电区域的存在支持了以前的地震和地球化学研究的建议,即Atotsugawa断层周围下地壳的流体起源于俯冲板。
更新日期:2021-04-01
down
wechat
bug