当前位置: X-MOL 学术Tectonophysics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessing the brittle crust thickness from strike-slip fault segments on Earth, Mars and Icy moons
Tectonophysics ( IF 2.7 ) Pub Date : 2021-02-24 , DOI: 10.1016/j.tecto.2021.228779
Frédéric-Victor Donzé , Yann Klinger , Viviana Bonilla-Sierra , Jérôme Duriez , Liqing Jiao , Luc Scholtès

Segment lengths along major strike-slip faults exhibit a size dependency related to the brittle crust thickness. These segments result in the formation of the localized “P-shear” deformation crossing and connecting the initial Riedels structures (i.e. en-echelon fault structures) which formed during the genesis stage of the fault zone. Mechanical models show that at all scales, the geometrical characteristics of the Riedels exhibit dependency on the thickness of the brittle layer. Combining the results of our mechanical discrete element model with several analogue experiments using sand, clay and gypsum, we have formulated a relationship between the orientation and spacing of Riedels and the thickness of the brittle layer. From this relationship, we derive that for a pure strike-slip mode, the maximum spacing between the Riedels is close to three times the thickness of the layer. For a transtensional mode, as the extensive component becomes predominant, the spacing distance at the surface becomes much smaller than the thickness. Applying this relationship to several well-characterized strike-slip faults on Earth, we show that the predicted brittle thickness is consistent with the seismogenic depth. Supposing the ubiquity of this phenomenon, we extented this relationship to characterize en-echelon structures observed on Mars, in the Memnonia region located West of Tharsis. Assuming that the outer ice shells of Ganymede, Enceladus and Europa, exhibit a brittle behavior, we suggest values of the corresponding apparent brittle thicknesses.



中文翻译:

从地球,火星和冰冷的卫星上的走滑断层段评估脆性地壳厚度

沿主要走滑断层的段长表现出与脆性壳厚度有关的尺寸依赖性。这些片段导致局部“ P-剪切”形变的形成,该形变穿过并连接在断裂带形成阶段形成的初始Riedels结构(即梯形断裂结构)。力学模型表明,在所有尺度上,Riedels的几何特征都表现出对脆性层厚度的依赖性。将我们的机械离散元素模型的结果与使用沙子,粘土和石膏进行的多个模拟实验相结合,我们制定了Riedels的方向和间距与脆性层厚度之间的关系。根据这种关系,我们可以得出,对于纯走滑模式,Riedels之间的最大间距接近该层厚度的三倍。对于拉伸模式,随着扩展成分占主导地位,表面的间距变得比厚度小得多。将这种关系应用于地球上几个特征明确的走滑断层,我们表明预测的脆性厚度与地震发生深度一致。假设这种现象无处不在,我们扩展了这种关系,以表征在塔尔西斯(Tharsis)西侧的Memnonia地区在火星上观察到的梯队结构。假设Ganymede,Enceladus和Europa的外部冰壳表现出脆性,我们建议采用相应的表观脆性厚度值。当广泛的成分成为主要成分时,表面​​的间距变得比厚度小得多。将这种关系应用于地球上几个特征明确的走滑断层,我们表明预测的脆性厚度与地震发生深度一致。假设这种现象无处不在,我们扩大了这种关系,以表征在位于塔尔西斯(Tharsis)西侧的Memnonia地区火星上观察到的梯队结构。假设Ganymede,Enceladus和Europa的外部冰壳表现出脆性,我们建议采用相应的表观脆性厚度值。当广泛的成分成为主要成分时,表面​​的间距变得比厚度小得多。将这种关系应用于地球上几个特征明确的走滑断层,我们表明预测的脆性厚度与地震发生深度一致。假设这种现象无处不在,我们扩展了这种关系,以表征在塔尔西斯(Tharsis)西侧的Memnonia地区在火星上观察到的梯队结构。假设Ganymede,Enceladus和Europa的外部冰壳表现出脆性,我们建议采用相应的表观脆性厚度值。我们表明,预测的脆性厚度与地震发生深度一致。假设这种现象无处不在,我们扩展了这种关系,以表征在塔尔西斯(Tharsis)西侧的Memnonia地区在火星上观察到的梯队结构。假设Ganymede,Enceladus和Europa的外部冰壳表现出脆性,我们建议采用相应的表观脆性厚度值。我们表明,预测的脆性厚度与地震发生深度一致。假设这种现象无处不在,我们扩展了这种关系,以表征在塔尔西斯(Tharsis)西侧的Memnonia地区在火星上观察到的梯队结构。假设Ganymede,Enceladus和Europa的外部冰壳表现出脆性,我们建议采用相应的表观脆性厚度值。

更新日期:2021-03-02
down
wechat
bug