当前位置: X-MOL 学术Renew. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of a skeletal mechanism for four-component biodiesel surrogate fuel with PAH
Renewable Energy ( IF 9.0 ) Pub Date : 2021-02-24 , DOI: 10.1016/j.renene.2021.02.054
Yuanqi Bai , Ying Wang , Xiaochen Wang

A four-component skeletal mechanism consisting of 1,4-hexadiene, methyl decanoate, methyl trans-3-hexenoate, n-hexadecane was developed to represent biodiesel fuel from various sources. The methyl decanoate and n-hexadecane were selected to represent saturated fatty acid methyl esters, and trans-3-hexenoate and 1,4-hexadiene were applied to adjust degree of unsaturation. A skeletal mechanism for this four-component biodiesel surrogate fuel with PAH was first formulated based on decoupling methodology, which contained a detailed C1 mechanism, a reduced C2–C3 mechanism, PAH mechanism and sub-mechanisms of four surrogate fuels, including 314 reactions and 98 species. After that, the skeletal mechanism was widely verified against various fundamental combustion experiments for each pure component and their mixtures. Furthermore, the experimental results of biodiesel soot volume fractions from biodiesel spray combustion in a constant-volume combustion vessel were used to verify the accuracy of the mechanism, and the skeletal mechanism was also coupled into the CFD-software to simulate the combustion characteristics of a diesel engine. Results showed that the calculated results agreed well with the experimental data including ignition delay times (IDTs), primary species concentrations, laminar flame speed, soot prediction and in-cylinder pressure of the engine. Overall, the developed compact skeletal mechanism was suitable for the combustion simulation of biodiesel fuel.



中文翻译:

PAH四组分生物柴油替代燃料的骨架机理研究

建立了由1,4-己二烯,癸酸甲酯,反3-己酸甲酯,正十六烷组成的四组分骨架机制,以代表来自各种来源的生物柴油燃料。选择癸酸甲酯和正十六烷代表饱和脂肪酸甲酯,并应用反式-3-己酸和1,4-己二烯来调节不饱和度。首先基于解耦方法,为这种四组分生物柴油替代燃料建立了骨架机理,其中包括详细的C1机理,还原的C2-C3机理,PAH机理以及四种替代燃料的子机理,包括314次反应和98种。此后,针对各种纯组分及其混合物,通过各种基本燃烧实验对骨架机理进行了广泛验证。此外,利用定容燃烧容器中的生物柴油喷雾燃烧产生的生物柴油烟so体积分数的实验结果验证了该机理的准确性,并将骨架机理也耦合到CFD软件中以模拟柴油机的燃烧特性。结果表明,计算结果与包括点火延迟时间(IDT),主要物质浓度,层流火焰速度,烟灰预测和发动机缸内压力在内的实验数据吻合良好。总体而言,开发的紧凑型骨架机构适用于生物柴油燃料的燃烧模拟。并且将骨架机制也耦合到CFD软件中,以模拟柴油机的燃烧特性。结果表明,计算结果与包括点火延迟时间(IDT),主要物质浓度,层流火焰速度,烟灰预测和发动机缸内压力在内的实验数据吻合良好。总体而言,开发的紧凑型骨架机构适用于生物柴油燃料的燃烧模拟。并且将骨架机制也耦合到CFD软件中,以模拟柴油机的燃烧特性。结果表明,计算结果与包括点火延迟时间(IDT),主要物质浓度,层流火焰速度,烟灰预测和发动机缸内压力在内的实验数据吻合良好。总体而言,开发的紧凑型骨架机构适用于生物柴油燃料的燃烧模拟。

更新日期:2021-03-02
down
wechat
bug