当前位置: X-MOL 学术IEEE J. Electron Devices Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
AlInGaN/GaN HEMTs With High Johnson’s Figure-of-Merit on Low Resistivity Silicon Substrate
IEEE Journal of the Electron Devices Society ( IF 2.0 ) Pub Date : 2020-12-08 , DOI: 10.1109/jeds.2020.3043279
Indraneel Sanyal , En-Shuo Lin , Yu-Chen Wan , Kun-Ming Chen , Po-Tsung Tu , Po-Chun Yeh , Jen-Inn Chyi

This work demonstrates high-performance AlInGaN/AlN/GaN high electron mobility transistors grown on 150 mm p-type low resistivity (resistivity~ 20–100 $\Omega $ -cm) silicon substrate with state-of-the-art Johnson’s figure-of-merit (JFOM). Current gain cut-off frequency ( $\text{f}_{\mathrm{ T}}$ ) of 83 GHz and 63 GHz and power gain cut-off frequency ( $\text{f}_{\mathrm{ max}}$ ) of 95 GHz and 77 GHz with a three-terminal off-state breakdown voltage of 69 V and 127 V, resulting in a high JFOM of 5.7 THz-V and 8.1 THz-V are achieved on the devices with a gate length of 0.16 $\mu \text{m}$ and gate to drain distance of 2 $\mu \text{m}$ and 4 $\mu \text{m}$ , respectively. The $\text{f}_{\mathrm{ T}}$ and J-FOM are comparable or better than the reported values obtained on high resistivity silicon and SiC substrates for devices with similar gate length. On the other hand, GaN-on-Si HEMT structure on the LR-Si substrate exhibits lower power gain and power added efficiency due to strong capacitive coupling effects. TCAD large signal output power simulation indicates significant improvements in output power by minimizing the defects and free charge carriers in the GaN buffer even in the presence of the parasitic channel conduction and conductive silicon substrate. We further propose a modified equivalent circuit model of the parasitic conduction to take into account the conductivity of the GaN and AlGaN buffer.

中文翻译:

在低电阻率硅衬底上具有高约翰逊品质因数的AlInGaN / GaN HEMT

这项工作演示了在150 mm p型低电阻率(电阻率〜20–100)上生长的高性能AlInGaN / AlN / GaN高电子迁移率晶体管 $ \ Omega $ -cm)硅基板,并具有最新的Johnson品质因数(JFOM)。电流增益截止频率( $ \ text {f} _ {\ mathrm {T}} $ )以及83 GHz和63 GHz的功率增益截止频率( $ \ text {f} _ {\ mathrm {max}} $ )在95 GHz和77 GHz的频率下具有三端关断击穿电压69 V和127 V,从而在栅长为0.16的器件上实现了5.7 THz-V和8.1 THz-V的高JFOM $ \ mu \ text {m} $ 栅极到漏极的距离为2 $ \ mu \ text {m} $ 和4 $ \ mu \ text {m} $ , 分别。这 $ \ text {f} _ {\ mathrm {T}} $ 与J-FOM相比,对于栅极长度相似的器件,在高电阻率的硅和SiC衬底上获得的报告值可比或更好。另一方面,由于强电容耦合效应,LR-Si衬底上的GaN-on-Si HEMT结构表现出较低的功率增益和功率附加效率。TCAD大信号输出功率仿真表明,即使存在寄生沟道导电和导电硅衬底,也可以通过最大程度地减少GaN缓冲器中的缺陷和自由电荷载流子来显着提高输出功率。我们进一步提出了一种改进的寄生传导等效电路模型,以考虑GaN和AlGaN缓冲器的电导率。
更新日期:2020-12-08
down
wechat
bug