当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part D J. Automob. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Control optimization of a compound power-split hybrid power system for commercial vehicles
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ( IF 1.5 ) Pub Date : 2021-02-23 , DOI: 10.1177/0954407021993639
Qing Li 1 , Zhendong Zhang 1 , Tong Zhang 2 , Han Guo 2, 3
Affiliation  

In this paper, based on two planetary gear sets, a novel compound power-split hybrid power system for commercial vehicles is presented. Firstly, mathematical models of the system dynamic torque control and the system efficiency are established by using an equivalent lever diagram and analyzing the power flow respectively. Then the system operating modes which are divided into two pure electric modes and one hybrid mode and corresponding control strategies are analyzed by the combined lever diagrams. Finally, control strategies in different modes to looking for the optimal system efficiencies are designed and validated by the bench test. In order to prolong its service life, the battery is charged with small power in the hybrid mode. The design and test results indicate that the optimal system efficiency control strategies are reasonable and reliable. The maximum value of the optimal system efficiency can reach about 0.92 in the pure electric mode, and 0.39 in the hybrid mode. And the proportion of the engine operating points with the brake specific fuel consumption (BSFC) lower than 215 g/kWh is 81%. The co-simulation results show that the maximum system efficiency can achieve 14.9% fuel consumption per 100 km drop compared with the minimum system efficiency for an 80 km/h constant speed condition, which indicates that the optimal system efficiency control strategy can greatly improve the vehicle fuel economy. This study can offer a research direction for energy management of hybrid power systems.



中文翻译:

商用车复合动力分配混合动力系统的控制优化

本文基于两个行星齿轮组,提出了一种新型的商用车复合动力分配混合动力系统。首先,通过使用等效杠杆图并分别分析功率流,建立了系统动态转矩控制和系统效率的数学模型。然后通过组合杠杆图分析了分为两种纯电动模式和一种混合模式的系统运行模式以及相应的控制策略。最后,通过台架试验设计并验证了不同模式下的控制策略,以寻找最佳的系统效率。为了延长其使用寿命,在混合模式下以小功率对电池充电。设计和测试结果表明,最优的系统效率控制策略是合理可靠的。最佳系统效率的最大值在纯电动模式下可以达到约0.92,在混合模式下可以达到0.39。制动比燃油消耗(BSFC)低于215 g / kWh的发动机工作点比例为81%。联合仿真结果表明,与在80 km / h恒速条件下的最低系统效率相比,每100 km下降时最大系统效率可实现14.9%的燃油消耗,这表明最优的系统效率控制策略可以极大地改善燃油效率。车辆燃油经济性。该研究可以为混合动力系统的能源管理提供研究方向。在纯电动模式下为92,在混合模式下为0.39。制动比油耗(BSFC)低于215 g / kWh的发动机工作点比例为81%。联合仿真结果表明,与在80 km / h恒速条件下的最小系统效率相比,最大系统效率每100 km下降可实现14.9%的燃料消耗,这表明最优的系统效率控制策略可以大大改善车辆燃油经济性。该研究可以为混合动力系统的能源管理提供研究方向。在纯电动模式下为92,在混合模式下为0.39。制动比燃油消耗(BSFC)低于215 g / kWh的发动机工作点比例为81%。联合仿真结果表明,与在80 km / h恒速条件下的最小系统效率相比,最大系统效率每100 km下降可实现14.9%的燃料消耗,这表明最优的系统效率控制策略可以大大改善车辆燃油经济性。该研究可以为混合动力系统的能源管理提供研究方向。与在80 km / h恒速条件下的最低系统效率相比,每100 km下降9%的燃油消耗,这表明最佳的系统效率控制策略可以大大提高车辆的燃油经济性。该研究可以为混合动力系统的能源管理提供研究方向。与在80 km / h恒速条件下的最低系统效率相比,每100 km下降9%的燃油消耗,这表明最佳的系统效率控制策略可以大大提高车辆的燃油经济性。该研究可以为混合动力系统的能源管理提供研究方向。

更新日期:2021-02-23
down
wechat
bug