当前位置: X-MOL 学术Physica E Low Dimens. Syst. Nanostruct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosted spintronic properties in triangular Si-based nanoflakes
Physica E: Low-dimensional Systems and Nanostructures ( IF 2.9 ) Pub Date : 2021-02-22 , DOI: 10.1016/j.physe.2021.114699
Hazem Abdelsalam , Seiji Yunoki , Qinfang Zhang

We investigate the magnetic properties of triangular silicene, silicon carbide, Si2BN, and their heterostructures using first principles calculations. Hydrogenation of surface Si atoms significantly enhances the net spin of silicene to 3n/2, n is the number of edge atoms, with perfect distribution only on the zigzag edges. The attached hydrogen prevents π-bonds formation between surface and edge Si-atoms, which provides all silicene edge atoms with unpaired p-orbital electrons to form half-filled states. Silicon carbide with C-/Si- edge atoms has ferromagnetic/antiferromagnetic ordering because of the formation of planer/edge-buckled structure; buckling at the edges arranges the topologically frustrated edge atoms in opposite directions making a net spin of 0zero. Stacking in heterostructures removes the magnetic ordering by forming interlayer π-bonds between edge atoms while twisting one of the layers may isolate some of edge atoms and retain the ferromagnetic state. All the considered flakes are diamagnetic materials with highest diamagnetism in silicene and its heterostructures. However, attaching iron oxide (Fe2O3) to the interactive Si-surface atoms transforms silicene to paramagnetic material, with positive net magnetic susceptibility. In addition to the improved magnetic properties, the electronic properties are also controllable. Thus, these flakes are promising candidates for performant semiconductor spintronics.



中文翻译:

增强了三角形硅基纳米薄片的自旋电子学性质

我们使用第一原理计算研究了三角形硅,碳化硅,Si2BN及其异质结构的磁性。表面Si原子的氢化显着提高了硅的净自旋至3n / 2,n是边缘原子的数量,仅在锯齿形边缘上具有完美的分布。附着的氢阻止表面和边缘Si原子之间形成π键,从而为所有硅边缘原子提供不成对的p轨道电子,从而形成半填充状态。具有C- / Si-边缘原子的碳化硅由于形成了平面/边缘屈曲结构而具有铁磁/反铁磁有序。边缘处的弯曲使拓扑受挫的边缘原子沿相反的方向排列,从而使净自旋为0zero。异质结构中的堆叠通过在边缘原子之间形成层间π键来消除磁序,同时扭曲其中一层可以隔离某些边缘原子并保留铁磁态。所有考虑的薄片是硅中具有最高反磁性的抗磁性材料及其异质结构。但是,将氧化铁(Fe 2 O 3 附着在相互作用的Si表面原子上可将硅烯转变为顺磁性材料,并且具有正的净磁化率。除了改善的磁性能外,电子性能也是可控的。因此,这些薄片是高性能半导体自旋电子学的有希望的候选者

更新日期:2021-03-02
down
wechat
bug