当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A coupled lattice Boltzmann-finite volume method for phase change material analysis
International Journal of Thermal Sciences ( IF 4.9 ) Pub Date : 2021-02-22 , DOI: 10.1016/j.ijthermalsci.2021.106893
Daniele Chiappini

The aim of this work is to present results obtained through a multi-physics solver used to numerically determine the thermal behaviour of a phase change material both for solidification and melting processes. Particular attention is addressed to the right implementation of PCM properties, which are not constant with respect to the considered phase. Thus, the energy equation is specifically rewritten for the PCM material in terms of enthalpy, in order to consider both sensible and latent heat. Liquid and solid enthalpy thresholds are fixed with respect to solid/liquid properties, to correctly determine the amount of PCM which undergoes the phase change. The implemented model allows varying the temperature (enthalpy) range where the phase change takes place. The influence of mushy area thickness (the intermediate zone between solid and liquid) has analysed both for charging and discharging processes in a heat exchanger-like geometry. Additionally, the LB equation itself is rewritten in order to deal with the solidification/melting front advance. Results show how the under-analysis phenomena are sensitive to solidification/melting front thickness, with predominant effects whenever conduction is the thermal driver. Effects are definitely tamed while convection plays a role. Results also show how, for the implemented heat exchanger operating conditions, the considered PCM (PureTemp37) can be completely melted in 5 h, independently from the mushy zone thickness (ΔT=[0.01,1.00,3.00]K). On the contrary, for the same duration of the discharging process, the solidified fraction ranges from 23% up to 35% whereas the mushy zone ΔT ranges from 0.01 K up to 3.00 K.Numerical results are compared with a set of literature/analytical data available for a range of non-dimensional numbers and both for conduction and convection driven phenomena. The agreement between numerical and literature data is satisfactory with positive outcomes for future model developments.



中文翻译:

耦合晶格玻尔兹曼有限体积法进行相变材料分析

这项工作的目的是介绍通过多物理场求解器获得的结果,该求解器用于数值确定凝固和熔融过程中相变材料的热行为。尤其要注意正确地实现PCM属性,这些属性对于所考虑的相位而言并不是恒定不变的。因此,为了考虑显热和潜热,专门针对PCM材料用焓重写了能量方程。相对于固/液性质,固定液体和固体焓阈值,以正确确定经历相变的PCM的量。所实现的模型允许改变发生相变的温度(焓)范围。糊状区域厚度(固体和液体之间的中间区域)的影响已在类似热交换器的几何形状中进行了充放电过程分析。另外,LB方程式本身被重写以便处理凝固/熔化前沿。结果表明,分析不足现象对凝固/熔化前沿厚度很敏感,只要传导是热驱动因素,就会产生显着影响。在对流中,一定要驯服效果。结果还表明,对于已实现的热交换器运行条件,考虑到的PCM(PureTemp37)如何能够在5小时内完全熔化,而与糊状区域的厚度无关(LB方程本身被重写以应对凝固/熔化前沿。结果表明,分析不足现象对凝固/熔化前沿厚度很敏感,只要传导是热驱动因素,就会产生显着影响。在对流中,一定要驯服效果。结果还表明,对于已实现的热交换器运行条件,考虑到的PCM(PureTemp37)如何能够在5小时内完全熔化,而与糊状区域的厚度无关(LB方程本身被重写以应对凝固/熔化前沿。结果表明,分析不足现象对凝固/熔化前沿厚度很敏感,只要传导是热驱动因素,就会产生显着影响。在对流中,一定要驯服效果。结果还表明,对于已实现的热交换器运行条件,考虑到的PCM(PureTemp37)如何能够在5小时内完全熔化,而与糊状区域的厚度无关(ΔŤ=[0.011.003.00]ķ)。相反,在相同的卸料过程中,凝固分数从23%到35%不等,而糊状区域ΔŤ 范围从0.01 ķ 最高3.00 ķ将数值结果与可用于一系列无量纲数以及传导和对流驱动现象的一组文献/分析数据进行比较。数值和文献数据之间的一致性令人满意,并为将来的模型开发带来积极成果。

更新日期:2021-02-23
down
wechat
bug