当前位置: X-MOL 学术J. Cloud Comp. › 论文详情
Method for detection of unsafe actions in power field based on edge computing architecture
Journal of Cloud Computing ( IF 2.788 ) Pub Date : 2021-02-22 , DOI: 10.1186/s13677-021-00234-w
Yanfang Yin; Jinjiao Lin; Nongliang Sun; Qigang Zhu; Shuaishuai Zhang; Yanjie Zhang; Ming Liu

Due to the high risk factors in the electric power industry, the safety of power system can be improved by using the surveillance system to predict and warn the operators’ nonstandard and unsafe actions in real time. In this paper, aiming at the real-time and accuracy requirements in video intelligent surveillance, a method based on edge computing architecture is proposed to judge unsafe actions of electric power operations in time. In this method, the service of unsafe actions judgment is deployed to the edge cloud, which improves the real-time performance. In order to identify the action being executed, the end-to-end action recognition model proposed in this paper uses the Temporal Convolutional Neural Network (TCN) to extract local temporal features and a Gate Recurrent Unit (GRU) layer to extract global temporal features, which increases the accuracy of action fragment recognition. The result of action recognition is combined with the result of equipment target recognition based on the yolov3 model, and the classification rule is used to determine whether the current action is safe. Experiments show that the proposed method has better real-time performance, and the proposed action cognition is verified on the MSRAction Dataset, which improves the recognition accuracy of action segments. At the same time, the judgment results of unsafe actions also prove the effectiveness of the proposed method.

中文翻译:

基于边缘计算架构的电力领域不安全行为检测方法

由于电力行业中的高风险因素,可以通过使用监视系统实时预测和警告操作员的不规范和不安全行为来提高电力系统的安全性。针对视频智能监控的实时性和准确性要求,提出了一种基于边缘计算架构的及时判断电力运行中不安全行为的方法。该方法将不安全行为判断服务部署到边缘云中,提高了实时性。为了识别正在执行的动作,本文提出的端到端动作识别模型使用时间卷积神经网络(TCN)来提取局部时域特征,并使用门循环单元(GRU)层来提取全局时域特征。 ,这提高了动作片段识别的准确性。将动作识别的结果与基于yolov3模型的设备目标识别的结果相结合,并使用分类规则确定当前动作是否安全。实验表明,该方法具有较好的实时性,并且在MSRAction数据集上对所提出的动作识别进行了验证,从而提高了动作段的识别精度。同时,不安全行为的判断结果也证明了该方法的有效性。实验表明,该方法具有较好的实时性,并且在MSRAction数据集上对所提出的动作识别进行了验证,从而提高了动作段的识别精度。同时,不安全行为的判断结果也证明了该方法的有效性。实验表明,该方法具有较好的实时性,并且在MSRAction数据集上对所提出的动作识别进行了验证,从而提高了动作段的识别精度。同时,不安全行为的判断结果也证明了该方法的有效性。
更新日期:2021-02-22
全部期刊列表>>
2021新春特辑
SN Applied Sciences期刊征稿中
虚拟特刊
亚洲大洋洲地球科学
NPJ欢迎投稿
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
上海中医药大学
哈工大
西湖大学
化学所
北京大学
山东大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
南方科技大学
张凤娇
中国石油大学
天合科研
x-mol收录
试剂库存
down
wechat
bug