当前位置:
X-MOL 学术
›
Q. J. Math.
›
论文详情
The Index Theorem for Toeplitz Operators as a Corollary of Bott Periodicity
Quarterly Journal of Mathematics ( IF 0.704 ) Pub Date : 2021-02-22 , DOI: 10.1093/qmath/haab008 Paul F Baum; Erik Van Erp
Quarterly Journal of Mathematics ( IF 0.704 ) Pub Date : 2021-02-22 , DOI: 10.1093/qmath/haab008 Paul F Baum; Erik Van Erp
This is an expository paper about the index of Toeplitz operators, and in particular Boutet de Monvel’s theorem [5]. We prove Boutet de Monvel’s theorem as a corollary of Bott periodicity, and independently of the Atiyah-Singer index theorem.
中文翻译:
Toeplitz算子的指数定理作为Bott周期的推论
这是一篇有关Toeplitz算子索引的说明性论文,尤其是有关Boutet de Monvel定理[5 ]。我们证明Boutet de Monvel定理是Bott周期的推论,并且独立于Atiyah-Singer指数定理。
更新日期:2021-02-22
中文翻译:

Toeplitz算子的指数定理作为Bott周期的推论
这是一篇有关Toeplitz算子索引的说明性论文,尤其是有关Boutet de Monvel定理[5 ]。我们证明Boutet de Monvel定理是Bott周期的推论,并且独立于Atiyah-Singer指数定理。