Mathematical Proceedings of the Cambridge Philosophical Society ( IF 0.741 ) Pub Date : 2021-02-22 , DOI: 10.1017/s0305004120000171 RENZO CAVALIERI; PAUL JOHNSON; HANNAH MARKWIG; DHRUV RANGANATHAN
We study the stationary descendant Gromov–Witten theory of toric surfaces by combining and extending a range of techniques – tropical curves, floor diagrams and Fock spaces. A correspondence theorem is established between tropical curves and descendant invariants on toric surfaces using maximal toric degenerations. An intermediate degeneration is then shown to give rise to floor diagrams, giving a geometric interpretation of this well-known bookkeeping tool in tropical geometry. In the process, we extend floor diagram techniques to include descendants in arbitrary genus. These floor diagrams are then used to connect tropical curve counting to the algebra of operators on the bosonic Fock space, and are showno coincide with the Feynman diagrams of appropriate operators. This extends work of a number of researchers, including Block–Göttsche, Cooper–Pandharipande and Block–Gathmann–Markwig.
中文翻译:

计算Hirzebruch曲面上的曲线:热带几何和Fock空间
我们通过组合和扩展一系列技术(热带曲线,平面图和Fock空间)来研究复曲面的平稳后代Gromov–Witten理论。利用最大复曲面退化,在热带曲线和复曲面上的后代不变量之间建立了一个对应定理。然后显示了中间退化,产生了地板图,从而对该热带几何学中的这种众所周知的簿记工具进行了几何解释。在此过程中,我们扩展了楼层图技术,将任意属的后代包括在内。这些底图然后用于将热带曲线计数连接到bosonic Fock空间上的算子代数,并与适当算子的费曼图重合。这扩展了包括Block-Göttsche,