当前位置: X-MOL 学术Geocarto Int. › 论文详情
Predicting spatial distribution of soil organic carbon and total nitrogen in a typical human impacted area
Geocarto International ( IF 3.789 ) Pub Date : 2021-02-22 , DOI: 10.1080/10106049.2021.1886344
Yingcong Ye; Yefeng Jiang; Lihua Kuang; Yi Han; Zhe Xu; Xi Guo

ABSTRACT

The relationship between soil properties and environmental covariates is mostly nonlinear for human impacted areas. Herein, we proposed a nonlinear model for mapping soil organic carbon (SOC) and total nitrogen (TN) in a typical human impacted area (a small watershed of Poyang Lake, China), namely radial basis function neural network combined with agricultural land use (RBFNN_ALU). The results showed that the RBFNN_ALU performs better than the ordinary kriging (OK), the OK combined with agricultural land use (OK_ALU), the geographically weighted regression (GWR), the multiple linear regression (MLR), the MLR combined with agricultural land use (MLR_ALU) and the RBFNN. In addition, RBFNN_ALU provided a more detailed and accurate description of the spatial SOC and TN patterns. The results indicate that when predicting spatial distribution of SOC and TN for human impacted areas, non-linear models are critical for predicting the spatial distribution of soil properties.

更新日期:2021-02-22
全部期刊列表>>
2021新春特辑
SN Applied Sciences期刊征稿中
JCR Q1医学全学科
虚拟特刊
亚洲大洋洲地球科学
NPJ欢迎投稿
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
上海中医药大学
南科大-连续三周2.26
西湖大学
化学所
北京大学
山东大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
南方科技大学
张凤娇
中国石油大学
天合科研
x-mol收录
试剂库存
down
wechat
bug