Superstructured Biomaterials Formed by Exchange Dynamics and Host–Guest Interactions in Supramolecular Polymers
Advanced Science ( IF 15.840 ) Pub Date : 2021-02-22 , DOI: 10.1002/advs.202004042 Alexandra N. Edelbrock; Tristan D. Clemons; Stacey M. Chin; Joshua J. W. Roan; Eric P. Bruckner; Zaida Álvarez; Jack F. Edelbrock; Kristen S. Wek; Samuel I. Stupp
Advanced Science ( IF 15.840 ) Pub Date : 2021-02-22 , DOI: 10.1002/advs.202004042 Alexandra N. Edelbrock; Tristan D. Clemons; Stacey M. Chin; Joshua J. W. Roan; Eric P. Bruckner; Zaida Álvarez; Jack F. Edelbrock; Kristen S. Wek; Samuel I. Stupp
![]() |
Dynamic and reversible assembly of molecules is ubiquitous in the hierarchical superstructures of living systems and plays a key role in cellular functions. Recent work from the laboratory reported on the reversible formation of such superstructures in systems of peptide amphiphiles conjugated to oligonucleotides and electrostatically complimentary peptide sequences. Here, a supramolecular system is reported upon where exchange dynamics and host–guest interactions between β‐cyclodextrin and adamantane on peptide amphiphiles lead to superstructure formation. Superstructure formation with bundled nanoribbons generates a mechanically robust hydrogel with a highly porous architecture that can be 3D printed. Functionalization of the porous superstructured material with a biological signal results in a matrix with significant in vitro bioactivity toward neurons that could be used as a supramolecular model to design novel biomaterials.
中文翻译:
通过超分子聚合物中的交换动力学和主客体相互作用形成的超结构生物材料
分子的动态和可逆组装在生物系统的分层超结构中无处不在,并在细胞功能中发挥关键作用。实验室的最新工作报道了在与寡核苷酸和静电互补的肽序列缀合的肽两亲物系统中这种超结构的可逆形成。在这里,报道了一个超分子系统,其中β之间的交换动力学和主客体相互作用肽两亲物上的环糊精和金刚烷导致超结构的形成。具有捆绑的纳米带的上部结构形成可产生具有3D打印的高度多孔结构的机械坚固的水凝胶。具有生物信号的多孔超结构材料的功能化导致具有对神经元的显着体外生物活性的基质,该基质可用作超分子模型来设计新型生物材料。
更新日期:2021-02-22
中文翻译:

通过超分子聚合物中的交换动力学和主客体相互作用形成的超结构生物材料
分子的动态和可逆组装在生物系统的分层超结构中无处不在,并在细胞功能中发挥关键作用。实验室的最新工作报道了在与寡核苷酸和静电互补的肽序列缀合的肽两亲物系统中这种超结构的可逆形成。在这里,报道了一个超分子系统,其中β之间的交换动力学和主客体相互作用肽两亲物上的环糊精和金刚烷导致超结构的形成。具有捆绑的纳米带的上部结构形成可产生具有3D打印的高度多孔结构的机械坚固的水凝胶。具有生物信号的多孔超结构材料的功能化导致具有对神经元的显着体外生物活性的基质,该基质可用作超分子模型来设计新型生物材料。