当前位置: X-MOL 学术Geosci. Front. › 论文详情
Field based index of flood vulnerability (IFV): A new validation technique for flood susceptible models
Geoscience Frontiers ( IF 4.202 ) Pub Date : 2021-02-22 , DOI: 10.1016/j.gsf.2021.101175
Susanta Mahato; Swades Pal; Swapan Talukdar; Tamal Kanti Saha; Parikshit Mandal

The flood hazard management is one of the major challenges in the floodplain regions worldwide. With the rise in population growth and the spread of infrastructural development, the level of risk has increased over time. Therefore, the prediction of flood susceptible area is a key challenge for the adoption of management plans. Flood susceptibility modeling is technically a common work, but it is still a very tough job to validate flood susceptible models in a very rigorous and scientific manner. Therefore, the present work in the Atreyee River Basin of India and Bangladesh was planned to establish artificial neural network (ANN), radial basis function (RBF), random forest (RF) and their ensemble-based flood susceptibility models. The flood susceptible models were constructed based on nine flood conditioning parameters. The flood susceptibility models were validated in a conventional way using the receiver operating curve (ROC). To validate the flood-susceptible models, a two dimensional (2D) hydraulic flood simulation model was developed. Also, the index of flood vulnerability model was developed and applied for validating the flood susceptible models, which was a very unique way to validate the predictive models. Friedman test and Wilcoxon Signed rank test were employed to compare the generated flood susceptible models. Results showed that 11.95%–12.99% of the entire basin area (10188.4 km2) comes under very high flood-susceptible zones. Accuracy evaluation results have shown that the performance of ensemble flood susceptible models outperforms other standalone machine learning models. The flood simulation model and IFV model were also spatially adjusted with the flood susceptibility models. Therefore, the present study recommended for the ensemble flood susceptibility prediction and IFV based validation along with conventional ways.



中文翻译:

基于现场的洪水脆弱性指数(IFV):针对洪水敏感模型的新验证技术

洪水灾害管理是全球洪泛区的主要挑战之一。随着人口增长和基础设施发展的扩散,风险水平随时间而增加。因此,对洪水易感区域的预测是采用管理计划的关键挑战。洪水敏感性建模在技术上是一项常见的工作,但是以非常严格和科学的方式验证洪水敏感性模型仍然是一项艰巨的工作。因此,目前计划在印度和孟加拉国的阿特里河流域开展工作,以建立人工神经网络(ANN),径向基函数(RBF),随机森林(RF)及其基于集合的洪水敏感性模型。基于九个洪水条件参数构建了洪水敏感模型。使用接收器工作曲线(ROC)以常规方式验证了洪水敏感性模型。为了验证洪水敏感性模型,开发了二维(2D)水力洪水模拟模型。此外,还开发了洪水脆弱性模型的索引并将其用于验证洪水易感性模型,这是验证预测模型的一种非常独特的方法。使用Friedman检验和Wilcoxon Signed秩检验来比较生成的洪水敏感模型。结果表明,整个流域(10188.4 km)的11.95%–12.99%开发了洪水脆弱性模型指数,并将其用于验证洪水易感性模型,这是验证预测模型的一种非常独特的方法。使用Friedman检验和Wilcoxon Signed秩检验来比较生成的洪水敏感模型。结果表明,整个流域(10188.4 km)的11.95%–12.99%开发了洪水脆弱性模型指数,并将其用于验证洪水易感性模型,这是验证预测模型的一种非常独特的方法。使用Friedman检验和Wilcoxon Signed秩检验来比较生成的洪水敏感模型。结果表明,整个流域(10188.4 km)的11.95%–12.99%2)处于很高的洪灾敏感区之下。准确性评估结果表明,集成泛洪敏感模型的性能优于其他独立的机器学习模型。还使用洪水敏感性模型在空间上调整了洪水模拟模型和IFV模型。因此,本研究建议对整体洪水敏感性预测和基于IFV的验证以及常规方法进行推荐。

更新日期:2021-02-22
全部期刊列表>>
2021新春特辑
SN Applied Sciences期刊征稿中
JCR Q1医学全学科
虚拟特刊
亚洲大洋洲地球科学
NPJ欢迎投稿
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
上海中医药大学
南科大-连续三周2.26
西湖大学
化学所
北京大学
山东大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
南方科技大学
张凤娇
中国石油大学
天合科研
x-mol收录
试剂库存
down
wechat
bug