当前位置: X-MOL 学术Ad Hoc Netw. › 论文详情
Semi-supervised Subject Recognition in low-modal sensor data
Ad Hoc Networks ( IF 3.643 ) Pub Date : 2021-02-22 , DOI: 10.1016/j.adhoc.2021.102472
Shivam Tiwari; Sourish Gunesh Dhekane; Krishnam Vajra; Dip Sankar Banerjee

Subject Recognition (SR) refers to the task of identifying persons performing activities in a smart environment using the data captured by the sensors installed in it. The existing literature mainly concentrates on supervised SR using the sensor data captured through multiple modalities. However, majority of the real-life sensor datasets are not annotated with the subjects performing the activities, which creates a scarcity of labeled data samples for this task. Issues of privacy and high manual annotation costs further complicate the problem of less labeled data. In addition to this problem, most of the datasets are of low modalities. Hence, the challenge lies in developing semi-supervised frameworks that are suitable for low-modal sensor data with sparse or no labels. Towards this, we initially perform benchmark experiments to analyze the factors of modality and amount of labeled data in the context of SR. Then, we propose semi-supervised frameworks for SR on the data collected by low-modal ubiquitous and visual sensors. In particular, we propose a clustering-based pseudo label generation algorithm to facilitate the training process in a semi-supervised domain for ubiquitous data. On the other hand, we propose Transfer Learning and Data Augmentation (TLDA) framework to perform SR on visual data in semi-supervised domain. To validate our proposed frameworks, we perform experiments on three real-world datasets, namely Smartphone, OPPORTUNITY, and UTD-MHAD dataset to achieve an accuracy of around 77%, 98%, and 91% respectively. Finally, we also provide an analysis on the aspect of merging modalities to propose a new research dimension for SR.



中文翻译:

低模态传感器数据中的半监督主题识别

主题识别(SR)是指使用安装在智能环境中的传感器捕获的数据来识别在智能环境中从事活动的人员的任务。现有文献主要使用通过多种方式捕获的传感器数据来研究有监督的SR。但是,大多数现实生活中的传感器数据集都没有进行活动的对象注释,这导致该任务的标签数据样本稀缺。隐私问题和较高的手动注释成本进一步使标签数据较少的问题变得复杂。除此问题外,大多数数据集的模态都较低。因此,挑战在于开发适用于具有稀疏标签或无标签的低模态传感器数据的半监督框架。为此,我们最初会进行基准实验,以分析SR情境下标记数据的形式和数量的因素。然后,我们针对低模态无处不在的视觉传感器收集的数据,提出了SR的半监督框架。特别是,我们提出了一种基于聚类的伪标签生成算法,以促进遍历数据在半监督域中的训练过程。另一方面,我们提出了转移学习和数据增强(TLDA)框架来对半监督域中的可视数据执行SR。为了验证我们提出的框架,我们对三个真实世界的数据集(即智能手机,机会和UTD-MHAD数据集)进行了实验,以分别达到约77%,98%和91%的准确性。最后,

更新日期:2021-02-22
全部期刊列表>>
牛年开工季
JCR Q1医学全学科
新春生命科学
新春医学
空气污染与健康
虚拟特刊
亚洲大洋洲地球科学
NPJ欢迎投稿
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
上海中医药大学
南科大-连续三周2.26
西湖大学
化学所
北京大学
厦门大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
清华
南方科技大学
中国石油大学
天合科研
x-mol收录
试剂库存
down
wechat
bug