当前位置: X-MOL 学术Quantum Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ferromagnetic gyroscopes for tests of fundamental physics
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2021-02-19 , DOI: 10.1088/2058-9565/abd892
Pavel Fadeev 1, 2 , Chris Timberlake 3 , Tao Wang 4 , Andrea Vinante 3, 5 , Y B Band 6 , Dmitry Budker 1, 2, 7 , Alexander O Sushkov 8 , Hendrik Ulbricht 3 , Derek F Jackson Kimball 9
Affiliation  

A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will process under the action of an external torque, such as that due to a magnetic field. Here we model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization. In the case of a freely floating FG, we model the transition from dynamics dominated by libration in relatively high externally applied magnetic fields, to those dominated by precession at relatively low applied fields. Measurement of the libration frequency enables in situ determination of the magnetic field and a technique to reduce the field below the threshold for which precession dominates the FG dynamics. We note that evidence of gyroscopic behavior is present even at magnetic fields much larger than the threshold field below which precession dominates. We also model the dynamics of an FG levitated above a type-I superconductor via the Meissner effect, and find that for FGs with dimensions larger than about 100nm the observed precession frequency is reduced compared to that of a freely floating FG. This is due to an effect akin to negative feedback that arises from the distortion of the field from the FG by the superconductor. Finally we assess the sensitivity of an FG levitated above a type-I superconductor to exotic spin-dependent interactions under practical experimental conditions, demonstrating the potential of FGs for tests of fundamental physics.



中文翻译:

用于基础物理测试的铁磁陀螺仪

铁磁陀螺仪 (FG) 是一种铁磁体,其角动量由电子自旋极化支配,并且将在外部扭矩(例如磁场引起的扭矩)的作用下进行处理。在这里,我们对 FG 动力学和灵敏度进行建模和分析,重点关注实验实现的实际方案。在自由浮动 FG 的情况下,我们模拟了从相对较高的外部施加磁场中由振动主导的动力学到在相对较低的施加磁场中由进动主导的动力学的转变。可以原位测量振动频率磁场的确定和一种将磁场降低到低于进动主导FG动力学的阈值的技术。我们注意到,即使在远大于进动占主导地位的阈值场的磁场中,也存在陀螺行为的证据。我们还通过迈斯纳效应模拟了悬浮在 I 型超导体上方的 FG 的动力学,并发现对于尺寸大于约 100nm 的 FG,与自由浮动的 FG 相比,观察到的进动频率降低。这是由于类似于负反馈的效应,这种效应是由超导体对 FG 的场畸变引起的。最后,我们评估了悬浮在 I 型超导体上方的 FG 在实际实验条件下对奇异的自旋相关相互作用的敏感性,

更新日期:2021-02-19
down
wechat
bug