当前位置: X-MOL 学术J. Phys. Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bacterial cellulose growth on 3D acrylate-based microstructures fabricated by two-photon polymerization
Journal of Physics: Photonics ( IF 4.6 ) Pub Date : 2021-02-18 , DOI: 10.1088/2515-7647/abe02c
Adriano J G Otuka 1 , Rafael R Domeneguetti 2 , Jonathas Q R Moraes 1 , Debora T Balogh 1 , Sidney J L Ribeiro 2 , Cleber R Mendona 1
Affiliation  

Miniaturized environments have emerged as an excellent alternative to evaluate and understand biological mechanisms. These systems are able to simulate macroenvironments with high reproducibility, achieving many results in a short time of analysis. However, microenvironments require specific architectures that can be reached using laser micromachining techniques, such as two-photon polymerization (TPP). This technique has many advantages, allowing the production of environments without shape limitation and with special features. In this work, aided by the TPP technique, we produce different arrays of microstructures, fabricated using acrylate-based materials, in order to evaluate the growth and development of the Komagataeibacter xylinus bacteria, the micro-organism responsible for producing bacterial cellulose (BC), a natural polymer with several biological applications. BC grown in microenvironments presents similar features to those of biofilm formed in macroenvironments, maintaining their attractive properties. In addition, due to the high optical quality and mechanical resistance of the BC matrices, we use these films as flexible substrates in TPP experiments, obtaining promising results for tissue engineering studies.



中文翻译:

双光子聚合制备的3D丙烯酸酯基微结构上的细菌纤维素生长

小型化的环境已成为评估和理解生物学机制的绝佳选择。这些系统能够以较高的可重复性模拟宏观环境,在较短的分析时间内即可获得许多结果。但是,微环境需要使用激光微加工技术(例如双光子聚合(TPP))才能达到的特定体系结构。该技术具有许多优点,允许生产不受形状限制且具有特殊功能的环境。在这项工作中,借助TPP技术,我们生产了使用丙烯酸酯基材料制造的不同微结构阵列,以评估木甲杆菌的生长和发育。细菌,负责产生细菌纤维素(BC)的微生物,它是一种具有多种生物学用途的天然聚合物。在微环境中生长的BC具有与在大环境中形成的生物膜相似的特征,并保持了它们的吸引力。此外,由于BC基质的高光学质量和机械耐受性,我们在TPP实验中将这些膜用作柔性基质,为组织工程研究获得了可喜的结果。

更新日期:2021-02-18
down
wechat
bug