当前位置: X-MOL 学术Publ. Astron. Soc. Jpn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study of the truncation strategy in the FPGA of a solar radio digital receiver
Publications of the Astronomical Society of Japan ( IF 2.2 ) Pub Date : 2021-01-18 , DOI: 10.1093/pasj/psab010
Fabao Yan 1, 2 , Yang Liu 1, 2 , Ke Xu 2, 3 , Ziqian Shang 2, 3 , Yuanyuan Zhang 2, 3 , Lei Zhang 2, 3 , Yanrui Su 1, 2 , Guang Lu 2, 3 , Zhao Wu 2, 3 , Yao Chen 2, 3
Affiliation  

Computation resource is the limiting factor in higher operational accuracy of field-programmable gate arrays (FPGAs) in solar radio digital receivers. The data truncation strategy which determines the accuracy of data is then the essential technology in the design of a receiving system. Based on the solar radio spectrometer (dual channel, 14 bit, 1.25 gigasamples per second) at the Chashan Solar Radio Observatory (CSO), this paper presents a data truncation strategy which can realize real-time solar radio observation (35–40 GHz) with high time and frequency resolution as well as a large dynamic range, and at the same time saves the computation resource to a large extent. Simulations of truncations during signal processing are carried out in MATLAB, and the best truncation mechanisms are deduced for windowing and fast Fourier transform (FFT). Using the simulation results, the best truncation strategies have been implemented in the solar radio receiver at CSO with the result that the best truncation bits for the windowing operation are [27 : 14], with an error of 2.5 × 10−4, and the best truncation bits for the FFT output are [20 : 5] with an error of 1.5 × 10−3. Compared with the processing of full-precision data, occupation of the computation resources in the FPGA can be reduced significantly. For instance, the lookup table, lookup table RAM, flip flop, and digital signal processing slices are reduced by 7.36%, 14.65%, 8.38%, and 24.94%, respectively, which guarantees broad-band real-time solar radio observations (35–40 GHz).

中文翻译:

太阳能无线电数字接收机FPGA截断策略研究

计算资源是太阳能无线电数字接收器中现场可编程门阵列 (FPGA) 更高操作精度的限制因素。决定数据准确性的数据截断策略是接收系统设计中必不可少的技术。本文基于茶山太阳射电天文台(CSO)的太阳射电光谱仪(双通道,14比特,每秒1.25G),提出了一种可实现实时太阳射电观测(35-40GHz)的数据截断策略。具有较高的时间和频率分辨率以及较大的动态范围,同时在很大程度上节省了计算资源。在MATLAB中对信号处理过程中的截断进行了仿真,推导出了开窗和快速傅里叶变换(FFT)的最佳截断机制。使用仿真结果,在 CSO 的太阳能无线电接收器中实施了最佳截断策略,结果窗口操作的最佳截断位为 [27 : 14],误差为 2.5 × 10−4,并且FFT 输出的最佳截断位为 [20 : 5],误差为 1.5 × 10−3。与全精度数据的处理相比,FPGA中计算资源的占用可以显着减少。例如,查找表、查找表 RAM、触发器和数字信号处理切片分别减少了 7.36%、14.65%、8.38% 和 24.94%,保证了宽带实时太阳射电观测(35 –40 GHz)。最佳截断策略已在 CSO 的太阳能无线电接收器中实施,结果窗口操作的最佳截断位为 [27 : 14],误差为 2.5 × 10−4,最佳截断位为FFT 输出为 [20 : 5],误差为 1.5 × 10−3。与全精度数据的处理相比,FPGA中计算资源的占用可以显着减少。例如,查找表、查找表 RAM、触发器和数字信号处理切片分别减少了 7.36%、14.65%、8.38% 和 24.94%,保证了宽带实时太阳射电观测(35 –40 GHz)。最佳截断策略已在 CSO 的太阳能无线电接收器中实施,结果窗口操作的最佳截断位为 [27 : 14],误差为 2.5 × 10−4,最佳截断位为FFT 输出为 [20 : 5],误差为 1.5 × 10−3。与全精度数据的处理相比,FPGA中计算资源的占用可以显着减少。例如,查找表、查找表 RAM、触发器和数字信号处理切片分别减少了 7.36%、14.65%、8.38% 和 24.94%,保证了宽带实时太阳射电观测(35 –40 GHz)。与全精度数据的处理相比,FPGA中计算资源的占用可以显着减少。例如,查找表、查找表 RAM、触发器和数字信号处理切片分别减少了 7.36%、14.65%、8.38% 和 24.94%,保证了宽带实时太阳射电观测(35 –40 GHz)。与全精度数据的处理相比,FPGA中计算资源的占用可以显着减少。例如,查找表、查找表 RAM、触发器和数字信号处理切片分别减少了 7.36%、14.65%、8.38% 和 24.94%,保证了宽带实时太阳射电观测(35 –40 GHz)。
更新日期:2021-01-18
down
wechat
bug