当前位置: X-MOL 学术Rice Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Growth and Photosynthesis Responses of a Super Dwarf Rice Genotype to Shade and Nitrogen Supply
Rice Science ( IF 4.8 ) Pub Date : 2021-02-19 , DOI: 10.1016/j.rsci.2021.01.007
Marc Schmierer , Oliver Knopf , Folkard Asch

Specific aspects of plant cultivation require tests under fully controlled environmental conditions with restricted energy supply, such as orbit-based space laboratories and low-light conditions. For these growing conditions, super dwarf plants have been developed as model crops, and a gibberellin- deficient Super Dwarf Rice genotype was proposed as a model crop for space flight plant experiments. We tested this genotype in a climate chamber experiment under different illumination and nitrogen supply levels to assess its suitability under scenarios with limited resource availability. A 25% reduction in illumination led to a 75% reduction in yield, mainly due to a 60% reduction in formed tillers and 20% reduction in grain weight, and a 80% reduction in illumination caused total yield loss. Leaf area under reduced illumination was significantly lower, and only marginal changes in the dimensions of leaves were observed. Plant photosynthesis was not significantly different between control and 75% illumination. This was explained by a higher photochemical efficiency under lower light conditions and a reduced mesophyll resistance. Therefore, we concluded that this genotype is well-suited for plant experiments under space and light-limited conditions since it kept its small stature and showed no shade avoidance mechanisms, such as leaf elongation, which would complicate experiments under low-light conditions. Nitrogen concentrations of 2.8 and 1.4 mmol/L led to no differences in plant growth. We concluded that a nitrogen concentration of 1.4 mmol/L is sufficient for this genotype under the light intensities.



中文翻译:

一个超级矮型水稻基因型的生长和光合作用对树荫和氮素供应的响应

植物栽培的特定方面要求在能源供应有限的完全受控环境条件下进行测试,例如基于轨道的太空实验室和弱光条件。对于这些生长条件,已经开发了超级矮植物作为模型作物,并提出了赤霉素缺乏型超级矮稻基因型作为航天植物实验的模型作物。我们在气候箱实验中在不同的光照和氮气供应水平下测试了该基因型,以评估其在资源有限的情况下的适用性。照度降低25%会导致产量降低75%,这主要是由于成形的分reduction减少了60%,谷物重量减少了20%,照度降低80%导致了总产量下降。减少光照下的叶片面积明显更低,仅观察到叶片尺寸的边缘变化。对照和75%光照下植物的光合作用没有显着差异。这可以通过在较低光照条件下较高的光化学效率和降低的耐叶肉性来解释。因此,我们得出结论,该基因型非常适合在空间和光受限条件下进行植物实验,因为该基因型保持其矮小的身材,并且没有避光机制,例如叶片伸长,这会使低光照条件下的实验变得复杂。氮浓度为2.8和1.4 mmol / L导致植物生长无差异。我们得出结论,在光照强度下,该基因型的氮浓度为1.4 mmol / L足够。并且仅观察到叶片尺寸的边缘变化。对照和75%光照下植物的光合作用没有显着差异。这可以通过在较低光照条件下较高的光化学效率和降低的耐叶肉性来解释。因此,我们得出结论,该基因型非常适合在空间和光受限条件下进行植物实验,因为该基因型保持其矮小的身材,并且没有避光机制,例如叶片伸长,这会使低光照条件下的实验变得复杂。氮浓度为2.8和1.4 mmol / L导致植物生长无差异。我们得出的结论是,在光照强度下,该基因型的氮浓度为1.4 mmol / L足够。并且仅观察到叶片尺寸的边缘变化。对照和75%光照下植物的光合作用没有显着差异。这可以通过在较低光照条件下较高的光化学效率和降低的耐叶肉性来解释。因此,我们得出结论,该基因型非常适合在空间和光受限条件下进行植物实验,因为该基因型保持其矮小的身材,并且没有避光机制,例如叶片伸长,这会使低光照条件下的实验变得复杂。氮浓度为2.8和1.4 mmol / L导致植物生长无差异。我们得出的结论是,在光照强度下,该基因型的氮浓度为1.4 mmol / L足够。对照和75%光照下植物的光合作用没有显着差异。这可以通过在较低光照条件下较高的光化学效率和降低的耐叶肉性来解释。因此,我们得出结论,该基因型非常适合在空间和光受限条件下进行植物实验,因为该基因型保持其矮小的身材,并且没有避光机制,例如叶片伸长,这会使低光照条件下的实验变得复杂。氮浓度为2.8和1.4 mmol / L导致植物生长无差异。我们得出结论,在光照强度下,该基因型的氮浓度为1.4 mmol / L足够。对照和75%光照下植物的光合作用没有显着差异。这可以通过在较低光照条件下较高的光化学效率和降低的耐叶肉性来解释。因此,我们得出结论,该基因型非常适合在空间和光受限条件下进行植物实验,因为该基因型保持其矮小的身材,并且没有避光机制,例如叶片伸长,这会使低光照条件下的实验变得复杂。氮浓度为2.8和1.4 mmol / L导致植物生长无差异。我们得出结论,在光照强度下,该基因型的氮浓度为1.4 mmol / L足够。因此,我们得出结论,该基因型非常适合在空间和光受限条件下进行植物实验,因为该基因型保持其矮小的身材,并且没有避光机制,例如叶片伸长,这会使低光照条件下的实验变得复杂。氮浓度为2.8和1.4 mmol / L导致植物生长无差异。我们得出结论,在光照强度下,该基因型的氮浓度为1.4 mmol / L足够。因此,我们得出结论,该基因型非常适合在空间和光受限条件下进行植物实验,因为该基因型保持其矮小的身材,并且没有避光机制,例如叶片伸长,这会使低光照条件下的实验变得复杂。氮浓度为2.8和1.4 mmol / L导致植物生长无差异。我们得出结论,在光照强度下,该基因型的氮浓度为1.4 mmol / L足够。

更新日期:2021-02-21
down
wechat
bug