当前位置: X-MOL 学术J. Membr. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Superhydrophobic composite graphene oxide membrane coated with fluorinated silica nanoparticles for hydrogen isotopic water separation in membrane distillation
Journal of Membrane Science ( IF 8.4 ) Pub Date : 2021-02-20 , DOI: 10.1016/j.memsci.2021.119136
Ming Wen , Min Chen , Kelin Chen , Pei-Long Li , Chao Lv , Xin Zhang , Yong Yao , Wan Yang , Guoqiang Huang , Guang-Kun Ren , Shun-Jie Deng , Yin-Ke Liu , Zhe Zheng , Ci-Gang Xu , De-Li Luo

Due to the laminar structure constructed by two-dimensional nanosheets, nanochannels are formed in the graphene oxide membrane (GOM), including capillaries formed by two closely spaced graphene sheets and nanopores in the nanosheets. These nanochannels have strong molecular sieving properties that can be tuned by various methods and applied in molecules separation. Such membranes are often used for the separation of different molecules or ions, but are rarely used for the isotope separation. In this work, superhydrophobic modification of the GOM was achieved by introducing layers of fluorinated silica nanoparticles on the membrane surface, combining the fluoro-containing resin to enhance the adhesion and decrease the surface energy. Using light/heavy water as a model, the hydrogen isotopic separating performance of this composite membrane was evaluated in an air gap membrane distillation (AGMD) apparatus. It was shown that the superhydrophobic coating of the membrane can effectively prevent the liquid water penetrating into the membrane, thus providing a pure vapor process in the membrane. Meanwhile, when compared to pure GOM and commercial polymeric membranes, the resultant membranes acquired superior isotopic selectivity in membrane distillation. The best performing membrane contains three layers of nanoparticles, of which the outermost surface was treated with 40 μL (heptadecafluoro-1, 1, 2, 2-tetrahydrodecyl) trimethoxysilane (17-FTMS) and 10 μL methyltrimethoxysilane (MTMOS). A mean separation factor value of 1.151 and a permeation flux of 0.036 kg m−2 h−1 were obtained. In addition, continuous test for up to 90 h showed a stable performance of the composite membrane, without compromising the selectivity and flux of the membrane. This study not only demonstrates the potential of superhydrophobic composite GOM for hydrogen isotopic sieving in membrane distillation, but also provides a facile and generic method for superhydrophobic modification of the hydrophilic membrane.



中文翻译:

氟化二氧化硅纳米粒子包覆的超疏水复合氧化石墨烯膜用于膜蒸馏中氢同位素水分离

由于由二维纳米片构成的层状结构,在氧化石墨烯膜(GOM)中形成了纳米通道,包括由两个紧密间隔的石墨烯片和纳米片中的纳米孔形成的毛细管。这些纳米通道具有很强的分子筛分特性,可以通过各种方法进行调整,并应用于分子分离。这种膜通常用于分离不同的分子或离子,但很少用于同位素分离。在这项工作中,GOM的超疏水改性是通过在膜表面上引入氟化二氧化硅纳米颗粒层,结合含氟树脂来增强粘合力并降低表面能来实现的。以轻/重水为模型,用气隙膜蒸馏(AGMD)装置评价了该复合膜的氢同位素分离性能。结果表明,膜的超疏水涂层可以有效地防止液态水渗透到膜中,从而在膜中提供纯净的蒸汽过程。同时,当与纯GOM膜和商业聚合物膜相比时,所得膜在膜蒸馏中获得了优异的同位素选择性。性能最好的膜包含三层纳米颗粒,其中最外表面用40μL(十七氟-1、1、2、2-2-四氢癸基)三甲氧基硅烷(17-FTMS)和10μL甲基三甲氧基硅烷(MTMOS)处理。平均分离系数值为1.151,渗透通量为0.036 kg m 结果表明,膜的超疏水涂层可以有效地防止液态水渗透到膜中,从而在膜中提供纯净的蒸汽过程。同时,当与纯GOM膜和市售聚合物膜相比时,所得膜在膜蒸馏中获得了优异的同位素选择性。性能最好的膜包含三层纳米颗粒,其中最外表面用40μL(十七氟-1、1、2、2-2-四氢癸基)三甲氧基硅烷(17-FTMS)和10μL甲基三甲氧基硅烷(MTMOS)处理。平均分离系数值为1.151,渗透通量为0.036 kg m 结果表明,膜的超疏水涂层可以有效地防止液态水渗透到膜中,从而在膜中提供纯净的蒸汽过程。同时,当与纯GOM膜和商业聚合物膜相比时,所得膜在膜蒸馏中获得了优异的同位素选择性。性能最好的膜包含三层纳米颗粒,其中最外表面用40μL(十七氟-1、1、2、2-2-四氢癸基)三甲氧基硅烷(17-FTMS)和10μL甲基三甲氧基硅烷(MTMOS)处理。平均分离系数值为1.151,渗透通量为0.036 kg m 所得的膜在膜蒸馏中获得了优异的同位素选择性。性能最好的膜包含三层纳米颗粒,其中最外表面用40μL(十七氟-1、1、2、2-2-四氢癸基)三甲氧基硅烷(17-FTMS)和10μL甲基三甲氧基硅烷(MTMOS)处理。平均分离系数值为1.151,渗透通量为0.036 kg m 所得的膜在膜蒸馏中获得了优异的同位素选择性。性能最好的膜包含三层纳米颗粒,其中最外表面用40μL(十七氟-1、1、2、2-2-四氢癸基)三甲氧基硅烷(17-FTMS)和10μL甲基三甲氧基硅烷(MTMOS)处理。平均分离系数值为1.151,渗透通量为0.036 kg m获得了-2  h -1。另外,长达90小时的连续测试显示了复合膜的稳定性能,而没有损害膜的选择性和通量。这项研究不仅证明了超疏水复合物GOM在膜蒸馏中进行氢同位素筛分的潜力,而且为亲水膜的超疏水改性提供了一种简便而通用的方法。

更新日期:2021-02-24
down
wechat
bug