当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and thermodynamic analysis of a novel methanol, hydrogen, and power trigeneration system based on renewable energy and flue gas carbon dioxide
Energy Conversion and Management ( IF 10.4 ) Pub Date : 2021-02-20 , DOI: 10.1016/j.enconman.2021.113922
Reza Nazerifard , Leyla Khani , Mousa Mohammadpourfard , Behnam Mohammadi-Ivatloo , Gülden Gökçen Akkurt

In this paper, a new trigeneration system is proposed to decrease atmospheric carbon dioxide emission and produce methanol, hydrogen, and power. The system is composed of an organic Rankine cycle, a direct methanol fuel cell, a carbon capture unit, a proton exchange membrane electrolyzer, and a methanol synthesis unit. A flue gas stream with a defined composition, solar energy, and the atmospheric air are the system's inlets. In the design step, special attention is paid to heat and mass integration between different components so that its waste can be lowered as much as possible. Then, mass balance law, energy conservation principle, exergy relations, and auxiliary equations are applied for each subsystem to investigate the system's thermodynamic performance. Also, the effect of changing operating parameters on the performance of each subsystem is studied. The obtained results show that the proposed system has the energy and exergy efficiencies of 66.84% and 55.10%, respectively. Furthermore, 94% of the total exergy destruction rate belongs to the water electrolyzer, while the contribution of the organic Rankine cycle is negligible. The performance of the methanol synthesis reactor depends strongly on its inlet temperature. Maximum equilibrium methanol concentration and carbon dioxide conversion are achieved at the inlet temperature of 210 °C. The parametric studies reveal that there is an optimum fuel cell current density in which its produced power density is maximized.



中文翻译:

基于可再生能源和烟气二氧化碳的新型甲醇,氢和电力三联产系统的设计和热力学分析

在本文中,提出了一种新的三代发电系统,以减少大气中的二氧化碳排放并产生甲醇,氢和电力。该系统由有机朗肯循环,直接甲醇燃料电池,碳捕获单元,质子交换膜电解器和甲醇合成单元组成。具有定义的成分,太阳能和大气的烟气流是系统的入口。在设计步骤中,要特别注意不同组件之间的热量和质量整合,以便尽可能减少其浪费。然后,将质量平衡定律,能量守恒原理,火用关系和辅助方程式应用于每个子系统,以研究系统的热力学性能。还,研究了更改操作参数对每个子系统性能的影响。所得结果表明,该系统的能量效率和火用效率分别为66.84%和55.10%。此外,总的火用破坏率的94%属于水电解槽,而有机朗肯循环的贡献可忽略不计。甲醇合成反应器的性能在很大程度上取决于其入口温度。在210°C的入口温度下达到最大的平衡甲醇浓度和二氧化碳转化率。参数研究表明,存在一个最佳的燃料电池电流密度,其中其产生的功率密度最大。分别。此外,总能干破坏率的94%属于水电解槽,而有机朗肯循环的贡献可忽略不计。甲醇合成反应器的性能在很大程度上取决于其入口温度。在210°C的入口温度下达到最大的平衡甲醇浓度和二氧化碳转化率。参数研究表明,存在一个最佳的燃料电池电流密度,其中其产生的功率密度最大。分别。此外,总能干破坏率的94%属于水电解槽,而有机朗肯循环的贡献可忽略不计。甲醇合成反应器的性能在很大程度上取决于其入口温度。在210°C的入口温度下达到最大的平衡甲醇浓度和二氧化碳转化率。参数研究表明,存在一个最佳的燃料电池电流密度,其中其产生的功率密度最大。在210°C的入口温度下达到最大的平衡甲醇浓度和二氧化碳转化率。参数研究表明,存在一个最佳的燃料电池电流密度,其中其产生的功率密度最大。在210°C的入口温度下达到最大的平衡甲醇浓度和二氧化碳转化率。参数研究表明,存在一个最佳的燃料电池电流密度,其中其产生的功率密度最大。

更新日期:2021-02-21
down
wechat
bug