当前位置: X-MOL 学术 › Energies › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on the Effects of Microstructural Surfaces on the Attachment of Moving Microbes
Energies ( IF 2.702 ) Pub Date : 2020-08-27 , DOI: 10.3390/en13174421
Hongyue Yang , Ji Qian , Ming Yang , Chunxi Li , Hengfan Li , Songling Wang

The research of marine antifouling is mainly conducted from the aspects of chemistry, physics, and biology. In the present work, the movement model of microorganisms along or against the flow direction on the microstructural surface was established. The model of globose algae with a diameter of 5 μm in the near-wall area was simulated by computational fluid dynamics (CFD), and the fluid kinematic characteristics and shear stress distribution over different-sized microstructures and in micropits were compared. Simulation results revealed that the increase of the β value (height to width ratio) was prone to cause vortexes in micropits. In addition, the closer the low-velocity region of the vortex center to the microstructural surface, the more easily the upper fluid of the microstructure slipped in the vortex flow and reduced the microbial attachment. Moreover, the shear stress in the micropit with a height and width of 2 μm was significantly higher than those in others; thus, microbes in this micropit easily fell off.

中文翻译:

微观结构表面对运动微生物附着影响的研究

海洋防污研究主要从化学,物理和生物学等方面进行。在目前的工作中,建立了微生物沿微观结构表面沿流动方向或逆着流动方向的运动模型。通过计算流体动力学(CFD)模拟了近壁直径为5μm的球状藻类模型,比较了不同大小的微结构和微坑中的流体运动学特征和切应力分布。模拟结果表明,β值(高宽比)的增加很容易在微坑中引起涡旋。另外,涡旋中心的低速区域离微结构表面越近,微结构的上部流体更容易在涡流中滑落并减少微生物的附着。此外,在微坑中,高和宽为2μm的剪切应力显着高于其他情况。因此,该微坑中的微生物容易脱落。
更新日期:2020-08-27
down
wechat
bug