当前位置: X-MOL 学术IEEE Trans. Energy Convers. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
LightGBM Technique and Differential Evolution Algorithm-Based Multi-Objective Optimization Design of DS-APMM
IEEE Transactions on Energy Conversion ( IF 5.0 ) Pub Date : 2020-07-15 , DOI: 10.1109/tec.2020.3009480
Zhenbao Pan , Shuhua Fang , Hui Wang

This article proposes a multi-objective optimization method for the optimization design of a new dual-stator arc permanent magnet machine (DS-APMM) which can be applied on the direct-drive scanning systems with limited angular movement, such as radar, large telescope. The proposed optimization method integrates light gradient boosting machine (LightGBM) with differential evolution algorithm (DEA) to achieve optimal design objectives of high back electromotive force, low total harmonic distortion, high average torque, and low torque ripple at different rotor speeds. The machine topology and analytical model of DS-APMM are firstly presented to determine the structural parameters to be optimized. The sensitivity of each structural parameter to the optimization objectives is analyzed based on the SHAP (SHapley Additive exPlanations) value. Then, a finite-element analysis (FEA)-based DS-APMM model is developed to acquire sample data. Based on the acquired sample data, a machine learning algorithm, LightGBM, is introduced to establish surrogate model that can fit the function relationship between design objectives and structural parameters. Subsequently, an intelligent search algorithm named DEA is adopted to search optimal combination of the structural parameters and hence obtain optimal machine performances of DS-APMM. Finally, the electromagnetic characteristics of the initial model, middle model and optimal model of DS-APMM are compared and analyzed, both FEA and prototype experiments verify the feasibility and superiority of the proposed multi-objective optimization method.

中文翻译:

基于LightGBM技术和基于差分进化算法的DS-APMM多目标优化设计

本文提出了一种新的双定子圆弧永磁电机(DS-APMM)的优化设计的多目标优化方法,该方法可应用于角度运动受限的直接驱动扫描系统,例如雷达,大型望远镜。所提出的优化方法将光梯度提升机(LightGBM)与微分进化算法(DEA)集成在一起,以实现最佳的设计目标,即在不同的转子速度下具有较高的反电动势,较低的总谐波失真,较高的平均转矩和较低的转矩波动。首先提出了DS-APMM的机器拓扑和分析模型,以确定要优化的结构参数。根据SHAP(SHapley Additive exPlanations)值分析每个结构参数对优化目标的敏感性。然后,建立了基于有限元分析(FEA)的DS-APMM模型来获取样本数据。基于获取的样本数据,引入了机器学习算法LightGBM,以建立可以满足设计目标与结构参数之间函数关系的替代模型。随后,采用名为DEA的智能搜索算法搜索结构参数的最佳组合,从而获得DS-APMM的最佳机器性能。最后,对DS-APMM的初始模型,中间模型和最优模型的电磁特性进行了比较和分析,有限元分析和原型实验都验证了所提出的多目标优化方法的可行性和优越性。基于获取的样本数据,引入了机器学习算法LightGBM,以建立可以满足设计目标与结构参数之间功能关系的替代模型。随后,采用名为DEA的智能搜索算法来搜索结构参数的最佳组合,从而获得DS-APMM的最佳机器性能。最后,对DS-APMM的初始模型,中间模型和最优模型的电磁特性进行了比较和分析,有限元分析和原型实验都验证了所提出的多目标优化方法的可行性和优越性。基于获取的样本数据,引入了机器学习算法LightGBM,以建立可以满足设计目标与结构参数之间函数关系的替代模型。随后,采用名为DEA的智能搜索算法来搜索结构参数的最佳组合,从而获得DS-APMM的最佳机器性能。最后,对DS-APMM的初始模型,中间模型和最优模型的电磁特性进行了比较和分析,有限元分析和原型实验都验证了所提出的多目标优化方法的可行性和优越性。采用名为DEA的智能搜索算法搜索结构参数的最佳组合,从而获得DS-APMM的最佳机器性能。最后,对DS-APMM的初始模型,中间模型和最优模型的电磁特性进行了比较和分析,有限元分析和原型实验都验证了所提出的多目标优化方法的可行性和优越性。采用名为DEA的智能搜索算法搜索结构参数的最佳组合,从而获得DS-APMM的最佳机器性能。最后,对DS-APMM的初始模型,中间模型和最优模型的电磁特性进行了比较和分析,有限元分析和原型实验都验证了所提出的多目标优化方法的可行性和优越性。
更新日期:2020-07-15
down
wechat
bug