当前位置: X-MOL 学术J. Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental implementation of an active synthesis of a gyroscopic-nonreciprocal acoustic metamaterial
Journal of Applied Physics ( IF 3.2 ) Pub Date : 2021-02-16 , DOI: 10.1063/5.0036754
S. Raval 1 , H. Zhou 1 , A. Baz 1
Affiliation  

Experimental realization of a new class of active Nonreciprocal Gyroscopic Meta-Material (NGMM) is presented. The proposed active NGMM system consists of a one-dimensional acoustic cavity provided with piezoelectric boundaries that act as sensors and actuators. These active boundaries are integrated with linear dynamic control capabilities that virtually synthesize a gyroscopic control action in order to generate desirable non-reciprocal characteristics of tunable magnitude and phase shift. The dynamics of a prototype of the NGMM cell are identified experimentally and the theoretical characteristics of the virtual gyroscopic controller are predicted for various control gains for both forward and backward propagations. The theoretical predictions are validated experimentally using a dummy NGMM cell to act as a physical dynamic controller. Such a preferred arrangement is coupled with analog controllers in order to enable fast execution of the controller and, in turn, enhance the bandwidth of its operating frequency. The time and frequency response characteristics of the NGMM cell are measured for different control gain and the behavior is evaluated for both forward and backward propagations. The obtained experimental results are found to be in close agreement with the theoretical predictions. The presented concept, controller design, and implementation of the NGMM can be extended to various critical structures to achieve realistic acoustic diode configurations in a simple and programmable manner.

中文翻译:

陀螺不可逆声超材料主动合成的实验实现

一类新的活性的实验实现Ñ onreciprocal ģ yroscopic中号ETA-中号aterial(NGMM)被呈现。提出的有源NGMM系统由一维声学腔组成,该腔具有压电边界,可充当传感器和致动器。这些主动边界与线性动态控制功能集成在一起,该功能虚拟地合成了陀螺仪的控制动作,以便生成可调节的幅度和相移的理想非互惠特性。NGMM原型的动力学通过实验识别单元,并针对正向和反向传播的各种控制增益预测虚拟陀螺控制器的理论特性。使用虚拟NGMM电池作为物理动态控制器,通过实验验证了理论预测。这样的优选布置与模拟控制器耦合,以使得能够快速执行控制器,并进而提高其工作频率的带宽。NGMM的时间和频率响应特性测量单元的不同控制增益,并评估正向和反向传播的行为。发现获得的实验结果与理论预测非常吻合。可以将所提出的概念,控制器设计和NGMM实施扩展到各种关键结构,从而以简单且可编程的方式实现逼真的声学二极管配置。
更新日期:2021-02-19
down
wechat
bug