当前位置: X-MOL 学术Struct. Concr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of ground granulated blast furnace slag and fly ash ratio and the curing conditions on the mechanical properties of geopolymer concrete
Structural Concrete ( IF 3.0 ) Pub Date : 2021-02-18 , DOI: 10.1002/suco.202000536
Manvendra Verma 1 , Nirendra Dev 1
Affiliation  

Geopolymer concrete (GPC) is an innovative and eco-friendly construction material. In the experimental investigation, examine the effect of ground granulated blast furnace slag (GGBFS) in the GPC by replacing the fly ash in the various ratios in the different mix design. Fly ash/GGBFS as 100/0, 75/25, 50/50, and 25/75 respectively rate by weight percentage taken in the mix design. All the mix designs specimens cured in two types are ambient-cured and oven-cured at 80°C for 24 h after the demolding of the samples, and both types samples tests at 7, 14, 28, 42 and 56 days for strength (compressive, splitting tensile, flexural strength) and non-destructive (rebound strength and ultrasonic pulse velocity [UPV]). Examine the density, Poisson ratio and modulus of elasticity of the all mix designs samples of both types of cured specimens at 28 days after the casting. Geopolymer bonding formation is amorphous or crystalline in the bonding mineral components analyzed by the X-ray diffraction test. Examine the thermal stability of the geopolymer bond paste after the gaining strength up to the 850°C by increases the temperature 10°C per minute gradually in the thermogravimetric analysis after the 28 days of casting after the experimental investigation results indicate that the ambient-cured samples got less engineering strength as compared to the oven-cured samples. However, in both cured samples, the mix has a ratio of 75/25 of fly ash/GGBFS as binding material got higher mechanical strength than other mixes. In the GPC mix design, the GGBFS 25% by weight of binder with fly ash has instantly increased the strength. However, after the increase of replacement of GGBFS with the flyash slightly decreases the strength of the mix designs. The rebound hammer test strength was marginally higher than the same mix designs specimens destructive compressive strength. UPV shows the similar trends of the graph of ambient-cured and oven cured to the rebound strength. The oven-cured specimens show a higher UPV compared to the ambient-cured specimens. The ambient-cured sample has a higher density compared to the oven-cured GPC specimens of different mix designs. Still, in both cured samples, mix design samples of 75/25 fly ash/GGBFS ratio got the average maximum density. The Poisson ratio of the ambient-cured GPC specimens is slightly excessive than oven-cured specimens. Still, the modulus of elasticity of the GPC mix designs is higher for the oven-cured samples. Weight loss of the specimens occurs at the elevation of temperature with the rise in the content of GGBFS in the mix gradually up to the 850°C, but in oven-cured samples, the weight loss was slightly excessive compared to the ambient-cured samples. After the experimental results of mechanical properties, propose the relationship equations among the mechanical properties. Relationship between flexural strength and compressive strength, splitting tensile and compressive strength, and modulus of elasticity compressive strength. Proposed equations are urn:x-wiley:14644177:media:suco202000536:suco202000536-math-0001, respectively.

中文翻译:

高炉矿渣粉煤灰配比及养护条件对地聚合物混凝土力学性能的影响

地质聚合物混凝土 (GPC) 是一种创新且环保的建筑材料。在实验研究中,通过在不同的混合设计中更换不同比例的粉煤灰,检查 GPC 中磨碎的粒状高炉矿渣 (GGBFS) 的效果。粉煤灰/GGBFS 分别为 100/0、75/25、50/50 和 25/75,在混合设计中采用的重量百分比。两种类型固化的所有混合设计样品在样品脱模后在环境固化和 80°C 烘箱固化 24 小时,两种类型的样品在 7、14、28、42 和 56 天进行强度测试(抗压、劈裂、抗弯强度)和非破坏性(回弹强度和超声脉冲速度 [UPV])。检查密度,两种固化试样在浇注后 28 天的所有混合设计样品的泊松比和弹性模量。通过 X 射线衍射测试分析,地质聚合物的结合形成在结合矿物成分中是无定形的或结晶的。浇注 28 天后的热重分析中以每分钟 10°C 的速度逐渐升高温度,检查地质聚合物粘结膏在强度达到 850°C 后的热稳定性,实验调查结果表明,常温固化与烤箱固化的样品相比,样品的工程强度较低。然而,在两个固化样品中,混合物的粉煤灰/GGBFS 比例为 75/25,因为粘合材料比其他混合物具有更高的机械强度。在 GPC 混合设计中,GGBFS 25%(重量)的粉煤灰粘合剂立即提高了强度。然而,在增加用粉煤灰替代 GGBFS 后,混合设计的强度略有降低。回弹锤试验强度略高于相同混合设计样品的破坏性抗压强度。UPV 显示了室温固化和烘箱固化到回弹强度的相似趋势。与环境固化的样品相比,烘箱固化的样品显示出更高的 UPV。与不同混合设计的烘箱固化 GPC 样品相比,常温固化样品具有更高的密度。尽管如此,在两个固化样品中,粉煤灰/GGBFS 比率为 75/25 的混合设计样品均获得了平均最大密度。常温固化 GPC 试样的泊松比略高于烘箱固化试样。仍然,烘箱固化样品的 GPC 混合设计的弹性模量更高。样品的重量损失发生在温度升高时,随着混合物中 GGBFS 的含量逐渐上升至 850°C,但在烘箱固化样品中,与环境固化样品相比,重量损失略微过度. 根据力学性能的实验结果,提出力学性能之间的关系方程。抗弯强度与抗压强度、劈裂抗拉抗压强度、弹性模量抗压强度之间的关系。提出的方程是 但在烘箱固化样品中,与常温固化样品相比,重量损失略微过度。根据力学性能的实验结果,提出力学性能之间的关系方程。抗弯强度与抗压强度、劈裂抗拉抗压强度、弹性模量抗压强度之间的关系。提出的方程是 但在烘箱固化样品中,与常温固化样品相比,重量损失略微过度。根据力学性能的实验结果,提出力学性能之间的关系方程。抗弯强度与抗压强度、劈裂抗拉抗压强度、弹性模量抗压强度之间的关系。提出的方程是骨灰盒:x-wiley:14644177:媒体:suco202000536:suco202000536-math-0001, 分别。
更新日期:2021-02-18
down
wechat
bug