当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiscale Structural Modulation of Anisotropic Graphene Framework for Polymer Composites Achieving Highly Efficient Thermal Energy Management
Advanced Science ( IF 14.3 ) Pub Date : 2021-02-19 , DOI: 10.1002/advs.202003734
Wen Dai 1, 2 , Le Lv 1, 2 , Tengfei Ma 3 , Xiangze Wang 4 , Junfeng Ying 1, 2 , Qingwei Yan 1, 2 , Xue Tan 1, 2 , Jingyao Gao 1, 2 , Chen Xue 1, 2 , Jinhong Yu 1, 2 , Yagang Yao 5 , Qiuping Wei 6 , Rong Sun 7 , Yan Wang 3 , Te-Huan Liu 4 , Tao Chen 1, 2 , Rong Xiang 8, 9 , Nan Jiang 1, 2 , Qunji Xue 1, 2 , Ching-Ping Wong 10 , Shigeo Maruyama 8, 9 , Cheng-Te Lin 1, 2
Affiliation  

Graphene is usually embedded into polymer matrices for the development of thermally conductive composites, preferably forming an interconnected and anisotropic framework. Currently, the directional self‐assembly of exfoliated graphene sheets is demonstrated to be the most effective way to synthesize anisotropic graphene frameworks. However, achieving a thermal conductivity enhancement (TCE) over 1500% with per 1 vol% graphene content in polymer matrices remains challenging, due to the high junction thermal resistance between the adjacent graphene sheets within the self‐assembled graphene framework. Here, a multiscale structural modulation strategy for obtaining highly ordered structure of graphene framework and simultaneously reducing the junction thermal resistance is demonstrated. The resultant anisotropic framework contributes to the polymer composites with a record‐high thermal conductivity of 56.8–62.4 W m−1 K−1 at the graphene loading of ≈13.3 vol%, giving an ultrahigh TCE per 1 vol% graphene over 2400%. Furthermore, thermal energy management applications of the composites as phase change materials for solar‐thermal energy conversion and as thermal interface materials for electronic device cooling are demonstrated. The finding provides valuable guidance for designing high‐performance thermally conductive composites and raises their possibility for practical use in thermal energy storage and thermal management of electronics.

中文翻译:

聚合物复合材料各向异性石墨烯框架的多尺度结构调制实现高效热能管理

石墨烯通常嵌入聚合物基体中以开发导热复合材料,最好形成互连且各向异性的框架。目前,剥离石墨烯片的定向自组装被证明是合成各向异性石墨烯框架的最有效方法。然而,由于自组装石墨烯框架内相邻石墨烯片之间的高结热阻,在聚合物基体中每 1 vol% 石墨烯含量实现超过 1500% 的热导率增强 (TCE) 仍然具有挑战性。在这里,展示了一种获得高度有序的石墨烯框架结构并同时降低结热阻的多尺度结构调制策略。由此产生的各向异性框架使得聚合物复合材料在石墨烯负载量约为13.3 vol%时具有创纪录的56.8-62.4 W m -1 K -1导热率,每1 vol%石墨烯的TCE超过2400%。此外,还展示了复合材料作为用于太阳热能转换的相变材料和作为用于电子设备冷却的热界面材料的热能管理应用。这一发现为设计高性能导热复合材料提供了宝贵的指导,并提高了其在电子热能存储和热管理中实际应用的可能性。
更新日期:2021-04-08
down
wechat
bug