当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A new pool boiling heat transfer correlation for wetting dielectric fluids on metal foams
International Journal of Heat and Mass Transfer ( IF 5.0 ) Pub Date : 2021-02-19 , DOI: 10.1016/j.ijheatmasstransfer.2021.121070
Leonardo Lachi Manetti , Ana Sofia Oliveira Henriques Moita , Elaine Maria Cardoso

Porous structures, as metal foams, can enhance the heat transfer performance. For a safe industrial application, a predictive model for both heat transfer coefficient and maximum heat flux is required. But, there is no correlation for dielectric fluids on metal foams available in the literature. This work aims to develop a correlation based on dimensional analysis for metal foam surfaces in pool boiling with different dielectric fluids. The model takes into account the porous heating surface characteristics (porosity, pore diameter, and thickness), the working fluid thermophysical properties, and its interaction. The model was developed based on the experimental database obtained by the authors and validated with the open literature database. Two metal foams with different characteristics were used for carrying out the pool boiling tests with two different working fluids: HFE-7100 and ethanol. The newly developed correlation predicted well the database with an average error equal to 10.8% where 93.8% within the error range of ± 30%. To the maximum heat flux, the average error was 13.6% where 100% within the error range of ± 30%. The pore diameter and thickness play an important role in both models. The porosity and solid-phase thermal conductivity from the metal foam change the porous medium thermal conductivity, which influences the heat transfer coefficient (HTC). Finally, the properties of the working fluid also influence the predictive model, mainly the latent heat of vaporization, liquid thermal conductivity, and saturation temperature.



中文翻译:

用于将介电液润湿金属泡沫的新型池沸腾传热关联

多孔结构,如金属泡沫,可以增强传热性能。为了安全的工业应用,需要一个传热系数和最大热通量的预测模型。但是,文献中没有关于金属泡沫上的介电液的相关性。这项工作旨在基于尺寸分析,针对使用不同介电液的沸腾池中的金属泡沫表面,建立相关性。该模型考虑了多孔加热表面的特性(孔隙度,孔径和厚度),工作流体的热物理性质及其相互作用。该模型是根据作者获得的实验数据库开发的,并通过开放文献数据库进行了验证。使用两种具有不同特性的金属泡沫对两种不同的工作流体:HFE-7100和乙醇进行池沸腾测试。新开发的相关性很好地预测了数据库,平均误差等于10.8%,其中93.8%在±30%的误差范围内。对于最大热通量,平均误差为13.6%,其中100%在±30%的误差范围内。孔径和厚度在两个模型中都起着重要作用。来自金属泡沫的孔隙率和固相导热率改变了多孔介质的导热率,这影响了热传递系数(HTC)。最后,工作流体的特性也会影响预测模型,主要是汽化潜热,液体导热率和饱和温度。HFE-7100和乙醇。新开发的相关性很好地预测了数据库,平均误差等于10.8%,其中93.8%在±30%的误差范围内。对于最大热通量,平均误差为13.6%,其中100%在±30%的误差范围内。孔径和厚度在两个模型中都起着重要作用。来自金属泡沫的孔隙率和固相导热率改变了多孔介质的导热率,这影响了热传递系数(HTC)。最后,工作流体的特性也会影响预测模型,主要是汽化潜热,液体导热率和饱和温度。HFE-7100和乙醇。新开发的相关性很好地预测了数据库,平均误差等于10.8%,其中93.8%在±30%的误差范围内。对于最大热通量,平均误差为13.6%,其中100%在±30%的误差范围内。孔径和厚度在两个模型中都起着重要作用。来自金属泡沫的孔隙率和固相导热率改变了多孔介质的导热率,这影响了热传递系数(HTC)。最后,工作流体的性质也会影响预测模型,主要是汽化潜热,液体导热系数和饱和温度。平均误差为13.6%,其中100%在±30%的误差范围内。孔径和厚度在两个模型中都起着重要作用。来自金属泡沫的孔隙率和固相导热率改变了多孔介质的导热率,这影响了热传递系数(HTC)。最后,工作流体的特性也会影响预测模型,主要是汽化潜热,液体导热率和饱和温度。平均误差为13.6%,其中100%在±30%的误差范围内。孔径和厚度在两个模型中都起着重要作用。来自金属泡沫的孔隙率和固相导热率改变了多孔介质的导热率,这影响了热传递系数(HTC)。最后,工作流体的性质也会影响预测模型,主要是汽化潜热,液体导热系数和饱和温度。

更新日期:2021-02-19
down
wechat
bug