当前位置: X-MOL 学术Proc. Inst. Mech. Eng. C J. Mec. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Material model assessment in Ti6Al4V machining simulations with FEM
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ( IF 1.8 ) Pub Date : 2021-02-18 , DOI: 10.1177/0954406221994883
Sílvia Ribeiro-Carvalho 1 , Ana Horovistiz 1 , J Paulo Davim 1
Affiliation  

Ti6Al4V alloy is a well-known difficult-to-cut material used in different industrial applications, to achieve the expected component quality, proper definition and control of the machining process parameters must be accomplished. To address this problem, simulations with finite element method (FEM) seem to be an interesting engineering tool to model and optimize machining processes. Nevertheless, the model capability in capturing the behaviour observed in real machining processes is associated with the definition of the model and parameters that describe the workpiece flow stress. This contribution aimed to study the performance of built-in AdvantEdge-2D™ material laws applied in Ti6Al4V orthogonal cutting simulations under dry conditions. The numerical models were created under three levels of cutting speed, a constant feed rate and depth-of-cut, a variable tool rake angle (of 20° and −6°/0°), but also using four Ti6Al4V constitutive laws, namely, one suggested in AdvantEdge™ library, a Johnson-Cook (JC) model, a Power law (PL) and a PL coupled with ductile damage model. Experimental results were used to assess the numerical models’ accuracy in predicting the machining forces and metal chips. Satisfactory results regarding the machining forces prediction were achieved with all material laws, yet when the damage criterion was coupled with the constitutive laws (PLD and AE standard material law), the simulations were also were able to achieve the expected chip morphology (serrated metal chips).



中文翻译:

用FEM在Ti6Al4V加工仿真中进行材料模型评估

Ti6Al4V合金是在不同工业应用中使用的众所周知的难切削材料,为了达到预期的组件质量,必须完成对加工工艺参数的正确定义和控制。为了解决这个问题,使用有限元方法(FEM)进行仿真似乎是一种有趣的工程工具,可以用来建模和优化加工过程。然而,模型捕获实际加工过程中观察到的行为的能力与模型的定义和描述工件流应力的参数有关。该成果旨在研究在干燥条件下应用于Ti6Al4V正交切削仿真中的内置AdvantEdge-2D™材料定律的性能。数值模型是在三种切削速度,恒定进给速度和切削深度,可变的刀具前角(20°和-6°/ 0°),并且还使用了四个Ti6Al4V本构定律,即AdvantEdge™库中建议的一个定律,Johnson-Cook(JC)模型,幂定律(PL)和PL加上延性损伤模型。实验结果被用来评估数值模型在预测加工力和金属屑方面的准确性。在所有材料定律下都获得了令人满意的有关加工力预测的结果,但是当损伤准则与本构定律(PLD和AE标准材料定律)结合使用时,仿真也能够达到预期的切屑形态(锯齿状金属切屑) )。幂定律(PL)和PL加上延性损伤模型。实验结果被用来评估数值模型在预测加工力和金属屑方面的准确性。在所有材料定律下都获得了令人满意的有关加工力预测的结果,但是当损伤准则与本构定律(PLD和AE标准材料定律)结合使用时,仿真也能够达到预期的切屑形态(锯齿状金属切屑) )。幂定律(PL)和PL加上延性损伤模型。实验结果被用来评估数值模型在预测加工力和金属屑方面的准确性。在所有材料定律下均获得了令人满意的有关加工力预测的结果,但是当损伤准则与本构定律(PLD和AE标准材料定律)结合使用时,仿真也能够达到预期的切屑形态(锯齿状金属切屑) )。

更新日期:2021-02-18
down
wechat
bug