当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Local Mending
arXiv - CS - Computational Complexity Pub Date : 2021-02-17 , DOI: arxiv-2102.08703
Alkida Balliu, Juho Hirvonen, Darya Melnyk, Dennis Olivetti, Joel Rybicki, Jukka Suomela

In this work we introduce the graph-theoretic notion of mendability: for each locally checkable graph problem we can define its mending radius, which captures the idea of how far one needs to modify a partial solution in order to "patch a hole." We explore how mendability is connected to the existence of efficient algorithms, especially in distributed, parallel, and fault-tolerant settings. It is easy to see that $O(1)$-mendable problems are also solvable in $O(\log^* n)$ rounds in the LOCAL model of distributed computing. One of the surprises is that in paths and cycles, a converse also holds in the following sense: if a problem $\Pi$ can be solved in $O(\log^* n)$, there is always a restriction $\Pi' \subseteq \Pi$ that is still efficiently solvable but that is also $O(1)$-mendable. We also explore the structure of the landscape of mendability. For example, we show that in trees, the mending radius of any locally checkable problem is $O(1)$, $\Theta(\log n)$, or $\Theta(n)$, while in general graphs the structure is much more diverse.

中文翻译:

本地修补

在这项工作中,我们介绍了可修复性的图论概念:对于每个局部可检查的图问题,我们都可以定义其修补半径,这捕捉了一个想法,即为了“修补漏洞”,需要修改部分解的程度。我们探索可修复性如何与有效算法的存在联系起来,特别是在分布式,并行和容错设置中。很容易看出,在分布式计算的本地模型中,在$ O(\ log ^ * n)$轮次中,$ O(1)$可解决的问题也可以解决。令人惊讶的是,在路径和循环中,反过来也具有以下含义:如果可以在$ O(\ log ^ * n)$中解决问题$ \ Pi $,则总会有一个限制\\ Pi '\ subseteq \ Pi $仍然可以有效解决,但也可以修改$ O(1)$。我们还探索了可修复性景观的结构。例如,我们显示在树中,任何局部可检查问题的修补半径为$ O(1)$,$ \ Theta(\ log n)$或$ \ Theta(n)$,而在一般图中,结构更加多样化。
更新日期:2021-02-18
down
wechat
bug