当前位置: X-MOL 学术Atmos. Meas. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Drone Measurements of Surface-Based Winter Temperature Inversions in the High Arctic at Eureka
Atmospheric Measurement Techniques ( IF 3.2 ) Pub Date : 2021-02-18 , DOI: 10.5194/amt-2020-515
Alexey B. Tikhomirov , Glen Lesins , James R. Drummond

Abstract. The absence of sunlight during the winter in the High Arctic results in a strong surface-based atmospheric temperature inversion especially during clear skies and light surface wind conditions. The inversion suppresses turbulent heat transfer between the ground and the boundary layer. As a result the difference between the surface air temperature, measured at a height of 2 m, and the ground skin temperature can exceed several degrees Celsius. Such inversions occur very frequently in polar regions and are of interest to understand the mechanisms responsible for surface-atmosphere heat, mass and momentum exchanges and are critical for satellite validation studies. In this paper we present the results of operations of two commercial remotely piloted aircraft systems, or drones, at the Polar Environment Atmospheric Research Laboratory (PEARL), Eureka, Nunavut, Canada, at 80° N latitude. The drones are the Matrice 100 and M210-RTK quad-copters manufactured by DJI and were flown over Eureka during the February–March field campaigns in 2017 and 2020. They were equipped with a temperature measurement system built on a Raspberry Pi single-board computer, three platinum wire temperature sensors, GNSS receiver, and a pressure sensor. We demonstrate that the drones can be effectively used in the High Arctic to measure vertical temperature profiles up to 60 m of the ground and sea ice surface. Our results indicate that the inversion lapse rates within 0–10 m altitude range above the ground can reach the values of ~0.1–0.3 °C/m (~100–300 °C/km). The results are in a good agreement with the coincident temperatures measured at 2, 6 and 10 m levels at the National Oceanic and Atmospheric Administration flux tower at PEARL. Above 10 m a weaker inversion with an order of magnitude smaller lapse rates is recorded by the drone. The inversion strength agrees well with one obtained from the radiosonde temperature measurements. Above the sea ice, drone temperature profiles are found to have an isothermal layer above a surface based layer of instability which is attributed to the sensible heat flux through the sea ice. With the drones we were able to evaluate the influence of local topography on the surface-based inversion structure above the ground and to measure extremely cold temperatures of air that can pool in topographic depressions. The unique technical challenges of conducting drone campaigns in the winter High Arctic are highlighted in the paper.

中文翻译:

尤里卡高空北极地区基于表面的冬季温度反演的无人机测量

摘要。高北极地区冬季无日照会导致强烈的基于地面的大气温度反演,尤其是在晴朗的天空和轻微的地面风条件下。反转抑制了地面与边界层之间的湍流热传递。结果,在2 m高处测得的地面空气温度与地面皮肤温度之间的差异可能会超过几摄氏度。这种反转非常频繁地发生在极地地区,并且对于了解造成地表大气热,质量和动量交换的机制很重要,并且对卫星验证研究至关重要。在本文中,我们介绍了位于尤里卡(Eureka)的极地环境大气研究实验室(PEARL)的两种商业远程驾驶飞机系统或无人机的运行结果。加拿大努纳武特,北纬80度。这些无人机是由DJI制造的Matrice 100和M210-RTK四旋翼飞机,分别在2017年和2020年的2月至3月的野战期间飞越尤里卡。它们配备了基于Raspberry Pi单板计算机的温度测量系统,三个铂丝温度传感器,GNSS接收器和一个压力传感器。我们证明了无人机可以在北极地区有效地用于测量高达60 m的地面和海冰表面的垂直温度剖面。我们的结果表明,在地面以上0–10 m海拔范围内的倒转失效率可以达到〜0.1–0.3°C / m(〜100–300°C / km)的值。结果与在2处测得的同时温度吻合良好 美国国家海洋和大气管理局通量塔位于PEARL,高度分别为6和10 m。无人机记录到超过10毫安的逆转强度较弱,且失误率小一个数量级。反演强度与从探空仪温度测量获得的反演强度非常吻合。在海冰上方,发现无人机温度曲线在基于表面的不稳定性层上方具有等温层,这是由于穿过海冰的显热通量所致。借助无人机,我们能够评估局部地形对地面以上基于地面的反演结构的影响,并能够测量可积聚在地形凹陷中的极冷空气温度。该论文强调了在冬季高北极地区进行无人机战役的独特技术挑战。无人机记录到超过10毫安的逆转强度较弱,且失误率小一个数量级。反演强度与从探空仪温度测量获得的反演强度非常吻合。在海冰上方,发现无人机温度曲线在基于表面的不稳定性层上方具有等温层,这是由于穿过海冰的显热通量所致。借助无人机,我们能够评估局部地形对地面以上基于地面的反演结构的影响,并能够测量可积聚在地形凹陷中的极冷空气温度。该论文强调了在冬季高北极地区进行无人机战役的独特技术挑战。无人机记录到超过10毫安的逆转强度较弱,且失误率小一个数量级。反演强度与从探空仪温度测量获得的反演强度非常吻合。在海冰上方,发现无人机温度曲线在基于表面的不稳定性层上方具有等温层,这是由于穿过海冰的显热通量所致。借助无人机,我们能够评估局部地形对地面以上基于地面的反演结构的影响,并能够测量可积聚在地形凹陷中的极冷空气温度。该论文强调了在冬季高北极地区进行无人机战役的独特技术挑战。反演强度与从探空仪温度测量获得的反演强度非常吻合。在海冰上方,发现无人机温度曲线在基于表面的不稳定性层上方具有等温层,这是由于穿过海冰的显热通量所致。借助无人机,我们能够评估局部地形对地面以上基于地面的反演结构的影响,并能够测量可积聚在地形凹陷中的极冷空气温度。该论文强调了在冬季高北极地区进行无人机战役的独特技术挑战。反演强度与从探空仪温度测量获得的反演强度非常吻合。在海冰上方,发现无人机温度曲线在基于表面的不稳定性层上方具有等温层,这是由于穿过海冰的显热通量所致。借助无人机,我们能够评估局部地形对地面以上基于地面的反演结构的影响,并能够测量可积聚在地形凹陷中的极冷空气温度。该论文强调了在冬季高北极地区进行无人机战役的独特技术挑战。发现无人机温度曲线在基于表面的不稳定性层之上具有等温层,这归因于通过海冰的显热通量。借助无人机,我们能够评估局部地形对地面以上基于地面的反演结构的影响,并能够测量可积聚在地形凹陷中的极冷空气温度。该论文强调了在冬季高北极地区进行无人机战役的独特技术挑战。发现无人机温度曲线在基于表面的不稳定性层之上具有等温层,这归因于通过海冰的显热通量。借助无人机,我们能够评估局部地形对地面以上基于地面的反演结构的影响,并能够测量可积聚在地形凹陷中的极冷空气温度。该论文强调了在冬季高北极地区进行无人机战役的独特技术挑战。
更新日期:2021-02-18
down
wechat
bug