当前位置: X-MOL 学术Oikos › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microclimatic variability buffers butterfly populations against increased mortality caused by phenological asynchrony between larvae and their host plants
Oikos ( IF 3.1 ) Pub Date : 2021-02-18 , DOI: 10.1111/oik.07653
Susu Rytteri 1 , Mikko Kuussaari 2 , Marjo Saastamoinen 3, 4
Affiliation  

Climate change affects insects in several ways, including phenological shifts that may cause asynchrony between herbivore insects and their host plants. Insect larvae typically have limited movement capacity and are consequently dependent on the microhabitat conditions of their immediate surroundings. Based on intensive field monitoring over two springs and on larger‐scale metapopulation‐level survey over the same years, we used Bayesian spatial regression modelling to study the effects of weather and microclimatic field conditions on the development and survival of post‐diapause larvae of the Glanville fritillary butterfly Melitaea cinxia on its northern range edge. Moreover, we assessed whether the observed variation in growth and survival in a spring characterized by exceptionally warm weather early in the season translated into population dynamic effects on the metapopulation scale. While similar weather conditions enhanced larval survival and growth rate in the spring, microclimatic conditions affected survival and growth contrastingly due to the phenological asynchrony between larvae and their host plants in microclimates that supported fastest growth. In the warmest microclimates, larvae reached temperatures over 20°C above ambient leading to increased feeding, which was not supported by the more slowly growing host plants. At the metapopulation level, population growth rate was highest in local populations with heterogeneous microhabitats. We demonstrate how exceptionally warm weather early in the spring caused a phenological asynchrony between butterfly larvae and their host plants. Choice of warmest microhabitats for oviposition is adaptive under predominant conditions, but it may become maladaptive if early spring temperatures rise. Such conditions may lead to larvae breaking diapause earlier without equally advancing host plant growth. Microclimatic variability within and among populations is likely to have a crucial buffering effect against climate change in many insects.

中文翻译:

微气候变异性使蝴蝶种群免受幼虫与其寄主植物之间因物候异步引起的死亡率增加

气候变化以多种方式影响昆虫,包括物候变化可能会导致草食性昆虫与其寄主植物之间发生异步。昆虫幼虫的活动能力通常有限,因此取决于其周围环境的微生境条件。基于对两个泉水的密集野外监测以及同年进行的大规模大规模种群调查,我们使用贝叶斯空间回归模型研究天气和微气候野外条件对仔猪滞育后幼虫发育和存活的影响。格兰维尔贝母蝴蝶melitaea cinxia在其北部山脉边缘。此外,我们评估了在春季早期以异常温暖的天气为特征的春季生长和生存变化是否转化为对种群规模的动态影响。尽管相似的天气条件提高了春季幼虫的存活率和生长率,但微气候条件却相反地影响了存活率和生长,这是由于幼虫与其宿主植物在支持最快生长的微气候条件下的物候不同步所致。在最温暖的微气候中,幼虫达到的温度比环境温度高20°C以上,导致摄食量增加,而生长较慢的寄主植物则无法提供支持。在种群的水平上,具有微生境异质性的本地人群的人口增长率最高。我们证明了春季初异常温暖的天气如何导致蝴蝶幼虫与其寄主植物之间发生物候不同步。在主要条件下,可以选择最温暖的微生境进行产卵,但如果早春温度升高,可能会适应不良。这样的条件可能导致幼虫更早地打破滞育,而没有同样促进宿主植物的生长。种群内部和种群之间的微气候变化可能对许多昆虫的气候变化具有至关重要的缓冲作用。这样的条件可能导致幼虫更早地打破滞育,而没有同样促进宿主植物的生长。种群内部和种群之间的微气候变化可能对许多昆虫的气候变化具有至关重要的缓冲作用。这样的条件可能导致幼虫更早地打破滞育,而没有同样促进宿主植物的生长。种群内部和种群之间的微气候变化可能对许多昆虫的气候变化具有至关重要的缓冲作用。
更新日期:2021-02-18
down
wechat
bug