当前位置: X-MOL 学术Compos. Part B Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Induced conducting energy-levels in a boron nitride nano-framework for asymmetric supercapacitors in high charge-mobility ionic electrolytes
Composites Part B: Engineering ( IF 13.1 ) Pub Date : 2021-02-18 , DOI: 10.1016/j.compositesb.2021.108728
Chandan Kumar Maity , Deb Kumar Santra , Kartikey Verma , Sumanta Sahoo , Sheldon Cotts , Deji Akinwande , Vikas Berry , Ganesh Chandra Nayak

Boron nitride's (BN) large band gap does not permit carrier transport at ambient conditions. We show that BN sheets can be exfoliated by functionalization with oxy-groups to introduce additional acceptor and donor energy levels appropriate for energy storage devices. Further, the incorporation of heteroatoms into transition metal sulfides enhances capacitance via Faradic redox reactions and their cyclic stability. The functionalized boron nitride (mK-BN) and Carbon Nanotubes (CNTs) are intertwined with a Zn-doped Cadmium-Sulfide (Zn–CdS) nanostructure to increase the surface area-charge storage. In a supercapacitor application, Zn–CdS/mK-BN/CNT exhibits a 787 F/g specific capacitance (SC) in an aqueous (aq.) electrolyte. Further, the Zn–CdS/mK-BN/CNT was deployed as a cathode material in an asymmetric supercapacitor device (ASC) coupled with an ionic electrolyte (IE), (NHEt3)+(NO3), offered a SC of 173 F/g with an approximate 99% stability due to the enhanced charge mobility. The reported functionalization of BN induces additional energy levels making the material ideal for energy storage devices and will directly impact the next-generation of advanced supercapacitor electrode materials.



中文翻译:

高电荷迁移率离子电解质中不对称超级电容器的氮化硼纳米框架中的感应导电能级

氮化硼(BN)的大带隙不允许载流子在环境条件下传输。我们表明可以通过官能团与氧基团剥落BN片,以引入适用于能量存储设备的其他受体和供体能级。此外,将杂原子掺入过渡金属硫化物中可通过法拉第氧化还原反应增强其电容,提高其循环稳定性。功能化的氮化硼(m K -BN)和碳纳米管(CNTs)与掺杂锌的硫化镉(Zn–CdS)纳米结构交织在一起,以增加表面积电荷的存储。在超级电容器应用中,Zn-CdS / m K -BN / CNT在水性(水溶液)电解质中显示出787 F / g的比电容(SC)。此外,Zn–CdS / m K-BN / CNT在与离子电解质(IE)(NHEt 3+(NO 3-耦合的不对称超级电容器装置(ASC)中用作阴极材料,提供的SC为173 F / g,约为99由于提高了电荷迁移率,因此具有%的稳定性。据报道,BN的功能化会引发额外的能级,从而使该材料成为能量存储设备的理想选择,并将直接影响下一代高级超级电容器电极材料。

更新日期:2021-02-21
down
wechat
bug